Examen de physique générale Il — Section SV Prof. Furno

Semestre été 2022

Exercice 1

Considérez un référentiel inertiel R avec comme origine le point spatial A. Une fusée voyage depuis
le point A vers un point B sur 'axe A — B avec une vitesse constante vs,s = 0.75¢ (mesurée dans le
référentiel R). Les points A et B sont au repos I'un par rapport a l'autre et la distance A — B est de
d = 1.5 x 10'* m dans le référentiel R.

a) Quelle est la distance A — B dans le référentiel de la fusée?

Un faisceau de particules relativistes voyage depuis une étoile lointaine vers le point B et, ensuite,
le point A, sur I'axe A — B, a une vitesse constante vp, mesurée dans R. Au moment ou 'avant du
faisceau se trouve a la position du point B, la fusée se trouve a la position du point A. L’horloge
de bord de la fusée indique que 260 s se sont écoulées depuis le moment ou la fusée se trouvait a
la position du point A jusqu’au moment ou la fusée rencontre I'avant du faisceau. A cet instant, la
fusée envoie un message radio vers le point A pour I'informer de I’arrivée du faisceau.

b) Calculez la vitesse du faisceau vp dans le référentiel R.

c) Dans le référentiel de la fusée, combien de temps s’écoule entre 'envoi du message radio et sa
réception au point A7

La station Discovery est au repos dans le référentiel R. Elle se trouve entre le point A et B, sur I'axe
A— B, a une distance de 3 x 10° m du point A mesurée dans le référentiel de la fusée. Les astronautes
de Discovery effectuent une sortie dans ’espace et doivent étre prévenus pour qu’ils puissent rentrer
dans Discovery avant l'arrivée du faisceau. Pour cela, un message radio est envoyé depuis le point A
en direction de Discovery a 'instant précis ou le message radio envoyé par la fusée est requ au point A.

d) Dans le référentiel R, combien de temps s’écoule-t-il entre I’émission du message radio par la
fusée et la réception par Discovery du message radio émis depuis le point A7

e) En sachant qu’il faut 3 minutes (mesurées dans le référentiel R) aux astronautes pour rentrer,
est-ce qu’ils vont étre prévenus suffisamment a I’avance pour se mettre en sécurité ? Considérez
que la communication entre les astronautes et Discovery est instantanée.

f) La distance entre avant et l'arriere du faisceau le long de I'axe A — B vaut L = 107 m dans
le référentiel du faisceau. Dans le référentiel R, combien de temps les astronautes doivent-ils
rester dans Discovery pour que le faisceau soit passé (quand larriere du faisceau est a la po-
sition de Discovery) ?

Une sonde se déplace perpendiculairement a ’axe A — B, a une vitesse relativiste constante vsypge =
0.6¢ mesurée dans le référentiel R.



g) Quelle est la norme de la vitesse de la sonde mesurée dans le référentiel du faisceau ?

h) En sachant qu’il a fallu fournir une énergie de 10'% J pour accélérer la sonde d’'une situation
de repos (dans le référentiel R) a la vitesse vsonge, quelle est la masse de la sonde ?

Indications : considérez la fusée et Discovery comme des points matériels dans I’espace, et n’ayant
aucun effet sur la propagation du faisceau et des messages radio. Vitesse de la lumiere ¢ = 3 x 108
m/s.

Corrigé

Voici ci-dessous un schéma général de 'exercice, avec les parametres principaux (NB : ce schéma
n’est bien sur pas a l'échelle...).
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FIGURE 1 — Schéma général de I'exercice

a) Dans ce premier point, seuls les systemes A — B et ”"fusée” nous intéressent. Choisissons le
référentiel S pour le systeme A — B, la fusée étant en mouvement par rapport a lui (référentiel
S’). On nous donne d = 1.5 x 10! m, exprimée dans le référentiel S. On cherche la distance d’
dans le référentiel S’. Il s’agit d’'une contraction de longueur, en considérant un déplacement
du référentiel S’ a une vitesse vy,s = 0.75¢. On trouve :

d = d _ V1—0.752-1.5 x 10" = 9.9 x 10'"%m (1)

Y fus

-1

2
ol 7Y ys est le coefficient relativiste de la fusée, donné par vs,s = < v/ 11— Uf(j—;)

b) La situation de cette question est représentée a la |figure 2|
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FIGURE 2 — Données et événements du point b)



Considérons a nouveau le référentiel S pour le systeme R. Le but est d’exprimer toutes les
données dans ce référentiel, car nous connaissons la distance totale A — B, qui peut étre
décomposée en la somme de deux distances : celle parcourue par le faisceau et celle parcourue
par la fusée. Dans le référentiel de la fusée, le temps écoulé est un temps propre, to = 260 s. Si
on se place dans notre référentiel S, le temps écoulé est donné par une dilatation de temps :

At = Ypys - to = At =393 s (2)

Dans le référentiel .S, la fusée s’éloigne a une vitesse de 0.75c. Du coup, la distance parcourue
est simplement donnée par :

Tfus = Vpus - At = 8.84 x 10" m (3)

Comme nous connaissons la distance propre entre A et B, le faisceau de particules a du
nécessairement parcourir le reste de celle-ci, a savoir :

zp=d—Tss = rp =6.16 x 10" m (4)
La distance zp et le temps At étant tous deux définis dans le référentiel S, la vitesse du

faisceau est simplement donnée par :

vp = % — vp = 1.57 x 10° m/s ~ 0.52¢ (5)

Note : La réponse ci-dessus est la norme de la vitesse, une grandeur toujours positive. Ce-
pendant, la valeur négative -0.52¢ a aussi été acceptée si cela se justifiait au vu du référentiel
choisi.

c) La situation est représentée sur la
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FIGURE 3 — Données et événements du point ¢)

Nous avons deux événements : ’envoi du signal et la réception du signal. Nous connaissons
sa vitesse de propagation (¢ = 3 x 10® m/s) et la distance qu’il doit parcourir (s, tirée du
point précédent). Du coup, le temps de propagation du signal dans le référentiel S est :

| Tjus  884x100m
Atp= =12 = = s 294.81 s (6)




Ce temps de propagation peut étre trouvé dans le référentiel S’ de la fusée grace a la trans-

formée de Lorentz :
us ’ A us ° us
Aty = Yus (AtR - WC—QJC) = Vfus (AtR + u) — At =T780s  (7)

c2

ol v est la vitesse de la fusée dans le référentiel S et Az la différence de position entre les
deux événements, dans le référentiel A— B. Pour étre convaincu de cette utilisation de Lorentz
(notamment pour se convaincre que Az < 0), voici une autre maniére de réaliser le calcul.
Notons les positions et temps dans chaque référentiel et pour chaque événement (envoi et
réception) :

événement ‘ S ‘ S’

(@ pus, At) (Vrus[@ fus — Vpus D] pus[ A — ZL25702])

réception (O,At + AtR) ('7qu [0 — Ufus<At + AtR)]ﬂ/fus [At + AtR — O])
Pour connaitre le temps demandé, il faut prendre la différence entre les coordonnées tempo-
relles dans S’ :

envol

T fus - Ufus
At;{ = /yfus(At + AtR - 0) = Vfus (At - fc—2f> (8)
T fus " Ufus
= pus (Dt L) (9)
=780 s (10)

d) La situation est représentée sur la [figure 4] Les instants ¢t = At et t = Atg on été représentés
comme sur la mais en considérant le faisceau également. Tous les temps sont considérés
comme étant pris dans le référentiel A — B.
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FIGURE 4 — Données et événements du point d)

Dans le référentiel A — B, le temps total de transmission du signal, depuis son envoi de la
fusée jusqu’a A puis jusqu’a sa réception sur Discovery, est donné par :

tr = At + -2 (11)
&



Attention, dans ’énoncé la distance est donnée dans le référentiel de la fusée. Il faut des lors
la repasser en distance propre :

Tp = Yus  Tp = 4.54 x 10° m (12)
L’équation [T1] devient donc :
4.54 x 10° m
tr =294.81 — = 309.94 13
T 5 3 x 108 m/s ° (13)

Méthode 1 : De son coté, le faisceau de particules s’est propagé d'une distance x¢,s — 2p
(c’est a dire la distance qu’il lui restait a parcourir jusqu’au point A, a laquelle il faut enlever
la distance de Discovery, se trouvant a une distance zp en avant de A) et avec une vitesse vp.
Il parcourra cette distance en un temps :

_ ZTps—2p 839 %10 m
B vp ~ 1.56 x 108 m/s

tp —535.82's (14)

Le signal et les particules vont arriver avec une différence de temps de :
Atpr =tp —t7 = 225.89 s (15)

Ce temps est bel et bien plus grand que 3 minutes, les astronautes ont le temps de rentrer
dans la station, OUF'!
Méthode 2 : Le temps total qui s’écoule avant que les astronautes ne soient en sécurité est

donné par :
Atgape =ty + 180 = 489.93 s (16)

Pendant cet intervalle de temps, le faisceau a parcouru une distance de :
df = Atsafe -vp = 7.67 X 1010 m (17)

Comme d est plus petite que la distance entre son point de rencontre avec la fusée et Discovery
(dp—p = Tyus —xp = 8.39 X 1010), le faisceau arrivera apres que les astronautes aient pu se
mettre en sécurité.

La longueur propre du faisceau Lg est de 107 m. Cette longueur est contractée dans le référentiel
S
Lo p
Lp=—=2853x10"m (18)
P
En connaissant la vitesse de propagation du faisceau, le temps de passage est donné par :
L
tpassage = —— = 0.054 s = 54 ms (19)
vp

Si on considere que les astronautes rentrent immédiatement dans Discovery (des qu’ils sont
prévenus), ils vont attendre un temps total de :

tattente = Atpr — 180 S + thassage = (225.89 — 180 + 0.054) s = 45.94 s (20)

Note : La réponse fp.ssqge S€Ule a aussi été acceptée.

bt



g) Choisissons 9, le référentiel A — B et 5, le référentiel du faisceau. Nous savons que chaque
élément se déplace dans le référentiel S comme suit :

Faisceau wu, = —vp Uy =0
Sonde vy, = 0 Uy = Vsonde

Pour calculer la vitesse de la sonde vue par le faisceau dans son référentiel (S’), on utilise les
tranformations de Lorentz inverses avec v = vp. Cela donne, pour chaque axe :

Uy — U 0—vp

ugzl_%: 1_02—0.520 (21)
W= b Dok g5, (22)

e (1 — 23) vp

Des lors, la norme de la vitesse vue par le faisceau est :

u' = Ju? +u? =0.73c (24)

h) Nous connaissons 1'énergie et la vitesse de la sonde, il suffit simplement d’appliquer la formule
vue au cours :

E

—— =044k 25
C2 (f)/sonde - 1) & ( )

E = mQC2(’}/50nd€ —1) <= my =



Exercice 2

Un artiste vient de compléter son dernier chef-d’oeuvre : deux cubes en aluminium de masse my, = 2
kg chacun, qui, a I’état initial, sont a la température de T4, = 600°C.

Pour refroidir le premier cube, I’artiste dispose d’un récipient a parois rigides et thermiquement iso-
lantes, qui se trouve au niveau de la mer. Le récipient est ouvert vers le haut et contient, dans 1’état
initial, m. = 2 kg d’eau a une température 7, ;, = 25°C. Le premier cube est immergé dans l'eau
et I’échange de la chaleur se passe uniquement entre I'eau et le cube jusqu’a atteindre 1’état final
d’équilibre thermique entre les deux.

a) Montrez que la température du systeme cube + eau est Ty, ; = 100°C dans 1'état final.
b) Quelle masse m,,, d’eau a été évaporée entre 'état initial et I’état final ?

¢) Quelle est la variation d’entropie AS;,, du systeme cube + eau (liquide et vapeur) entre I’état
initial et 1’état final ?

d) A Détat final, quel est le volume Vj,s occupé par le systeme composé du cube et de I'eau
liquide restante ?

Pour refroidir le deuxiéme cube, I'artiste dépose celui-ci dans un deuxieéme récipient (situé au niveau
de la mer et identique au premier), qui est instantanément fermé de maniére hermétique avec un
piston mobile de masse négligeable. Le piston peut coulisser sans frottement et est thermiquement
isolant. Dans cet état initial, le récipient contient uniquement 10 moles d’air a une température
Toin = 25°C et le cube, qui est & une température Ty ;, = 600°C. Le cube et I'air échangent de
la chaleur lentement de facon a ce que le piston soit en tout temps en équilibre mécanique, jusqu’a
atteindre 1’état final, ou le cube et ’air sont a 1’équilibre thermique.

e) Calculez la température Ty, r du systeme cube + air dans I’état final.

f) Quel est le volume occupé par I'air V; dans 'état final et quels sont le travail, W, et la chaleur,
Q, échangés avec 'extérieur du récipient fermé ?

Indications : chaleur spécifique de 'aluminium ¢4, = 897 J/(K kg); chaleur spécifique de 'eau
ce = 4186 J/(K kg); chaleur latente de vaporisation de l'eau L. = 2256 x 10° J/kg; coefficient
d’expansion linéaire de I'aluminium o = 2 x 1075 °C~!; densité de 'eau p, (exprimée en kg / m?) a
la température T (exprimée en °C) p, = 1001.4 — 0.1011 x T — 0.0033 x T?; densité de I'aluminium
a 25°C pa = 2700 kg/m3. Pour les points e) et f), on négligera 'expansion thermique du cube et on
traitera I’air comme un gaz parfait diatomique (avec uniquement des degrés de liberté translationnels
et rotationnels). Constante des gaz parfaits R = 8.314 J/K/mol.

Corrigé

a) Montrez que la température, Ty, r, du systeme cube + eau est 100°C dans I’état final.

En étant au niveau de la mer le point d’ébullition de I'eau est 100°C. On peut imaginer trois
possibilités :



1. La température finale est comprise entre 25°C et 100°C. Le cube d’aluminium chauffe I'eau,
mais pas suffisamment pour atteindre le point d’ébullition.

2. La température finale est de 100°C, et une certaine quantité d’eau sera évaporée.
3. La température finale est entre 100°C et 600°C, et toute 'eau est évaporée.

Pour décider lequel des scénarios sera réalisé, on commence par comparer la quantité de cha-
leur que le bloc d’aluminium peut transférer a l'eau, et la chaleur nécessaire pour chauffer
I’eau jusqu’a 100°C.

La chaleur libérée par le bloc lorsque sa température descend de 600°C a 100°C est
AQA = CAlmAl(fSOO — 100)OC ~ 897 kJ (26)
La chaleur nécessaire pour chauffer I’eau jusqu’a son point d’ébullition est

AQ, = cem(100 — 25)°C ~ 628 kJ (27)

L’eau atteindra donc son point d’ébullition, et une partie se transformera en vapeur. Pour
évaporer toute I’eau dans le récipient, la chaleur nécessaire serait

meLe = 4512 kJ (28)
On conclut alors que le bloc va chauffer I'eau jusqu’a Ty, y = 100°C mais qu’elle ne va pas
completement s’évaporer.

Quelle masse m,q, d’eau a été évaporée entre I'état initial et 1'état final 7

Pour trouver la masse d’eau évaporée, on égalise la chaleur donnée par le bloc a celle recue
par l'eau

CAlmAl(TAl,in — Tsys,f) - Ceme(Tsys,f - Te,in) + mvapLe (29)

Alyjin — dsys,f)CAITTVAL — sys,f = Lejin)Cellle
(T Tsys.r)cam (T Tein)Cem
Le
Quelle est la variation d’entropie ASy,s du systeme cube + eau (liquide et vapeur) entre I'état

initial et 1’état final ?

~ 0.12 kg (30)

Myap =

De maniere générale, la variation d’entropie est donnée par la formule suivante :

0Q
dsS = — 31
h (1)
On exprime la chaleur 6¢) échangée lors du changement de la température et lors de I’évaporation
0Q =cm dT
6@ = L. dmvap



On peut maintenant écrire la variation totale d’entropie du systeme eau+bloc, en faisant
attention d’exprimer les températures en degrés Kelvin

Tsys,f Tsys,f Myap L d
ASeys = / e a1 + / L / all (32)
Te,in T TAl,in T 0 Tsys,f
T T MeoyanLs
ASS L=, el sys,f 1 sys,f vaplie 33
! Celtte ( Te,in ) T eamain (TAl,in * Tsys,f ( )
AS,y, ~ (1879 — 1526 + 721) J/K ~ 1075 J/K (34)

d) A Détat final, quel est le volume Vs occupé par le systeme composé du cube et de I'eau
liquide restante ?

Le volume occupé par 1’eau et le bloc dépend de leur température. Le volume d’eau peut étre
calculé en utilisant I’expression pour sa densité p. donnée dans I'énoncé

me — mvap o me — mvap

pe  1001.4 — 0.10117y,, f — 0.0033772

Sys7f

v, = ~2.0-107 m? (35)

Le volume du bloc est trouvé en utilisant le coefficient de dilatation «, qui nous permet de
calculer le coefficient d’expansion volumique § = 3a.

Va = Vo(1 + 3aAT) (36)

avec Vp le volume ”initial” du bloc. Attention, puisqu’on connait la densité de I'aluminium
a 25°C, on écrira le volume Vj pour le bloc a 25°C et la différence de température AT =
Tsys,f — 25.

m

Vi = —2(1 4 3a(Tyys s — 25°C)) ~ 7.4-10~* m? (37)

PA
Le volume total occupé par le systeme est simplement la somme des volumes occupés par I'eau
et le bloc

Vigs = Ve + V4~ 2.7-107% m® (38)

e) Calculez la température Ty, ; du systeme cube + air dans I’état final.
Dans cette deuxieme partie de I'exercice, la chaleur cédée par le bloc servira a chauffer I'air,
mais aussi a augmenter son volume, puisque le piston peut coulisser. L’augmentation de volume

correspond donc a un travail W effectué par l'air. En considérant le systéeme air 4+ bloc, on
peut écrire le premier principe comme suit

CAlmAl(TAl,in - Tsys,f) = CVn(Tsys,f - Ta,in) + w (39)

avec Cy = 5R/2. Notez qu’on aurait pu simplement égaliser les chaleurs échangées entre bloc
et air en utilisant les chaleurs spécifiques a pression constante.
Le travail nécessaire pour augmenter le volume de 'air est donné par

W= / PV = pogm - (Vy — Vi) (40)



ol on a supposé que la pression a I'intérieur du cylindre reste égale a la pression atmosphérique,
puisque le piston est en équilibre mécanique en tout temps. Pour trouver le changement de
volume, on utilise la loi des gaz parfaits

R
pV =nRT = (V; - Vi) = ;— (Layey — ) (41)
atm
Le travail W vaut donc
W = nR(Tyye; — T) (42)

On peut finalement exprimer la température finale a partir de I’équation

TAlvchlmAl + Tmm(o\/n + nR)
cama + Cyn+nR

Quel est le volume occupé par I'air V; dans ’état final et quels sont le travail, W, et la chaleur,
Q, échangés avec l'extérieur du récipient fermé ?

~ 519.7°C = 792.15 K (43)

Toys,s =

Le travail W a été exprimé au point précédent :
W =nR(Tsys,; — Toin) = 41.1 kJ (44)

La chaleur () échangée avec I'extérieur est nulle puisqu’on suppose que le récipient est isolé
thermiquement.

Q=0 (45)
Le volume final V; peut étre calculé en utilisant la loi des gaz parfaits :
RTys
V= Dl 0,651 m? (46)
Patm
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Exercice 3

Un gaz parfait monoatomique (n = 10 moles) subit un cycle constitué des transformations suivantes,
que 'on considere comme réversibles :

1) Transformation isobare d’'un état A avec volume V, = 0.4 m?, pression py = 2.49 bar & un
état B avec Vg = 0.1 m3.

2) Transformation isochore de I'état B a 1’état C' avec pression pc = p < pa.
3) Transformation isobare de 'état C' a 'état D.

4) Transformation isochore de I'état D a I'état A.

a) Dessinez le cycle ABC'D A dans un diagramme p—V'. S’agit-il d’un cycle moteur ou réfrigérateur 7
Considérez le cycle ABCDA tel que p = 0.83 bar.
b) Calculez la température 7', le volume V| et la pression p dans chaque état A, B, C, D.
c) Calculez la chaleur échangée et le travail lors de chaque transformation 1), 2), 3), 4).
d) Représentez et comparez de maniére qualitative les distributions des vitesses des atomes du
gaz aux deux températures extrémes du cycle : vous discuterez en particulier de quelle distri-

bution il s’agit, de la position relative des maxima, de la largeur a mi-hauteur et de l'intégrale
de chaque distribution.

Considérez maintenant les transformations 1), 2), 3), 4) avec la pression p a déterminer.

e) Calculez la pression p telle que le changement d’enthalpie du gaz entre I’état C' et 1’état D
vaut AHCD = 124500 J.

f) Calculez la pression p telle que Tp = T'.

g) Le changement d’enthalpie du gaz sur le cycle ABC' DA est plus grand pour les conditions du
point e) ou f) 7 Justifiez votre réponse.

h) Sila transformation 1) est remplacée par une transformation irréversible entre les deux mémes
états A et B, quel est le changement d’enthalpie du gaz sur le cycle ABC'DA? Justifiez votre
réponse.

Considérez maintenant les transformations 1), 2), 3), 4) telles que p/ps — 0. Soit Qcp et Qpa les
chaleurs échangées lors des transformations 3) et 4) respectivement, et Wy le travail total sur cycle

ABCDA.

i) Montrez que
i [@op +@pal _

2.
p/pa—0 ’chcle‘
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Indications : on arrondit la valeur de la constante des gaz parfaits a R = 8.3 J/K/mol.

Corrigé

a) Le cycle est représenté sur la figure ci-dessous. Il s’agit d’un un cycle réfrigérateur car il est
parcouru dans le sens anti-horaire.

P 4

L

Pal — — — —

r 3

Bai>— = = =

O
A 4
O

[
L

VB VA V

b) Pour calculer P, V et T dans les états A, B, C, D, on va utiliser la loi des gaz parfaits apres
avoir converti la pression en [Pal.

Point A :
Vi=04m?
pa = 2.49 bar = 2.49 x 10° Pa (47)
7y = PAYA o0 i
n
Point B :
Vg =0.1m?
pp = pa = 2.49 x 10° Pa (48)
Ty = PBYB 500
nRk
Point C :
Voe=Vg=01m?
pc = 0.83 bar = 0.83 x 10° Pa (49)
7. =PV 00 i
nR

12



Point D :

VD == VA =04 IIl3
pp = pc = 0.83 x 10° Pa

_ Pp Vb
nR

Tp =400 K

(50)

c¢) Pour trouver la chaleur échangée et le travail fait par ou sur le gaz lors de chaque transforma-
tion 1, 2, 3, 4, on utilise le premier principe de la thermodynamique et la définition du travail

oW = poV.

Transformation 1 (A—B) :

Qap = AUysp +Wap = TLCV(TB — TA> +pA(VB — VA) = —186.750 kJ

Ou on a utilisé Cy =

Wap =pa(Ve — Va) = =74.700 kJ

AUpsp = Qap — Wag

(51)

(52)

3R/2, pour gaz monoatomique. Etant donné qu’il s’agit d'une
transformation isobare, on aurait aussi pu utiliser :

Qap =nCp(Tp —Ta)

Avec Cp = bR/2, toujours pour gaz monoatomique.

Transformation 2 (B—C) :

Transformation 3 (C—D) :

Qcp = AUcp + Wep = nCV(TD — Tc) +pC(VD — Vc) =62.250 kJ

Etant donné qu’il s’agit d’une transformation isobare, on aurait aussi pu utiliser :

Transformation 4 (D—A) :

Wge =0
AUpc = Qpc

Qpc = nCy(Tg — Tg) = —24.900 kJ

WCD = pC(VD — Vc) =24.900 kJ

AUcp = Qcp — Wep

Qcp =nCp(Tp —T¢)
Wpa=0
AUpa = Qpa

Qpa =nCy(Ty —Tp) = 99.600 kJ
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d) Les températures extrémes calculées au point b) sont T = 100 K et T4 = 1200 K. La vitesse
des atomes du gaz est décrite par une distribution de Maxwell-Boltzmann. Le maximum
de la fonction de distribution pour la température plus élevée correspond a une vitesse plus
élevée que celle de la température plus basse : il sera plus a droite. La largeur a mi-hauteur
de la fonction de distribution est plus grande pour une plus haute température car un plus
grand nombre de molécules ont une vitesse élevée alors qu’a basse température la distribution
est plus étroite car la majorité des molécules sont a une vitesse plus basse. L’intégrale des
deux distributions est toujours égale a 1 car elles sont normalisée par rapport au nombre de
molécules considérées dans notre gaz, qui est 10 moles dans ce cas. On pourrait également
utiliser non pas la probabilité, mais le nombre d’atomes ou de molécules qui ont une certaine
vitesse. Dans ce cas 'intégrale serait égale au nombre total de molécules ou d’atomes dans notre
systeme. Les fonctions de distribution pour les deux températures peuvent étre qualitativement
dessinées comme suit :

A

probability

v

atom speed v

e) L’enthalpie est définie comme H = U + pV. Une variation d’enthalpie peut étre écrite comme
AH = AU + A(pV) = AU + VAp + pAV. Dans le cas d’une transformation isobare, telle
que la transformation CD, le terme VAp est nul, donc AH = Q :

AHep = AUcp + pAVep = nCy(Tp — Te) + p(Vp — Vi) (61)

On utilise la loi des gaz parfaits pour remplacer les températures avec la pression p et le
volume, et on utilise Cyy = 3R/2 pour un gaz monoatomique :

3 _.oVp pVeo

AHep = n§R(ﬁ - ﬁ) +p(Vp — Vi) (62)
3 5

AHcp = (5 +1)p(Vp = Vo) = Pg(VD - Ve) (63)

=" =1. 10° P 4

P= S~y = 166 10° Pa (64)

f) Pour calculer p, on va utiliser la loi des gaz parfaits avec Tp=Tp.

o TLRTD
= v

p =0.62 x 10° Pa (65)
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g) L’enthalpie est une variable d’état donc il n’y a pas de variation tout au long du cycle.

AHgyee =0 (66)
h) Mémes considérations qu’a la question g).

AHcyee =0 (67)

i) Pour démontrer cette limite il suffit de remplacer les températures par la pression et le volume,
d’utiliser V4 = 4V et d’expliciter p/pa :

y |Qep + Qpal
im —————— =
p/pa—0 |chcle|
I Qcp +Qpa|
im |——| =
p/pa—0 | Wap + Wep
lim TZCP(TD — Tc) -+ TZCV(TA — TD) .
p/pA—0 pA(VB - VA) +p(VD - VC)
L |BnR(ER - BE) ¢ SnR(els — )
p/PA—0 pA(VB - VA) +P(VA - VB)
- 5p(Va = Vi) +3Valpa —p) |
p/pa—0 pA(VB - VA) (VA - VB)
. 52 (Va—Vp) + §VA—( -2
p/pa—0 (VA - VB)(_ - 1)
lim %ﬁ(VA —Vp) +3Va(l - 1%)‘ _
p/pa—0 (VA - VB)(_ - 1)
3Va
Vg — VA
24V B
Vg —4Vg|
% =
-3
|—2|=2 (68)
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Exercice 4

L’entiereté du sol d'une patinoire est constituée d'une piste de glace (superficie A = 400 m?, épaisseur
L =5 cm, conductivité thermique de la glace k, = 2.4 W/m/K). La surface supérieure de la glace est
a la température Ty = -5°C. La surface inférieure de la glace est maintenue a la température T; par
un frigo. Les murs et le toit de la patinoire sont a une température égale a celle de I'air a l'intérieur
de la patinoire, T,;. = 5°C.

En sachant que les températures ne changent pas au cours du temps :

a) Calculez la température de la surface inférieure de la glace, T;, dans le cas ou la surface
supérieure de la glace échange de la chaleur par convection avec I'air ambiant (négligez tout
rayonnement).

b) Calculez la température de la surface inférieure de la glace, T;, dans le cas ou la surface
supérieure de la glace échange de la chaleur par convection avec ’air ambiant ainsi que par
rayonnement avec les murs et le toit de la patinoire. Traitez la glace, les murs et le toit comme
des corps noirs.

c) Montrez que la température a mi-distance entre la surface inférieure et supérieure de la piste
de glace est donnée par T, = (T; + T) /2.

Le frigo a un coefficient de performance, CP = 5, et fonctionne avec un moteur électrique qui conver-
tit 80% de I’énergie électrique en énergie mécanique. Le prix de énergie électrique est de 0.3 CHF
pour 1 kWh.

d) Combien coute I'utilisation du frigo, par jour, pour les conditions du point a) ?

Considérez ensuite une piste de glace synthétique de mémes dimensions que la piste de glace des
points précédents. La glace synthétique a une conductivité thermique k(z) = k4 exp (—z/L), avec
la coordonnée selon I'axe perpendiculaire a la piste de glace, telle que x = 0 a la surface supérieure
et x = L a la surface inférieure. En sachant que, en conditions stationnaires, la conduction de la
chaleur a l'intérieur de la glace synthétique est décrite par I’équation suivante :

d dT ()
. [m(m) o } =0, (69)
e) Calculez la température a la surface inférieure, telle que 7'(0) = —5°C et que la puissance

thermique a travers la surface supérieure soit de 300 kW.

Indications : la piste de glace est traitée en géométrie plane. Le transport de la chaleur a travers les
surfaces verticales de la piste est négligé. Les murs et le toit ont une épaisseur négligeable. Coeflicient
de transfert de la chaleur par convection glace-air h = 65W/m? /K. Constante de Stefan-Boltzmann
op =5.7x 1078 W/m?/K*.

Corrigé
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a) Dans le cas stationnaire, I’égalité de puissance thermique a travers la surface supérieure s’ap-
plique. Le flux de chaleur est donné par

(9 ﬂ - Ts
qr = —/@ga—ggT(m) = 59%. (70)

Dans le régime stationnaire, on a 1’égalité des flux de chaleurs
AQT = STA7 (71)

ou Agr est la puissance totale a travers la couche supérieure de la glace par diffusion, et
St A est la puissance regue sur la couche supérieure. On considere les cas ou la piste de glace
échange de la chaleur par convection avec ’air ambiant. Dans ce cas, on a que

ASt = Ah(Ts — Tyr). (72)
L’égalité des flux devient alors
Arﬁgw = Ah(Ts — Toir), (73)
Avec 70 on résout pour T;,
T S T + T (74)

Application numérique :

_ 0.05[m] x 65[W/m/m/K]

T, AV fm K] x (268.15[K] — 278.15[K]) + 268.15[ K] = 254.6[K] (—18.54°C)
(75)
et
qr = 2i$%%%%§£f§1 x (254.6|K] — 268.15[K]) = —650[.J/m?/s] (76)

b) On considere les cas ou la piste de glace échange de la chaleur par convection avec I’air ambiant
et par rayonnement thermique. Dans ce cas, le bilan des puissances est

qrA = AWT, — Ty,) + Ac(T = T2

s air)'

(77)
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Dans cette formule nous avons utilisé I'hypothese que la glace et les parois rayonnent comme
des corps noirs.
On en déduit alors la température T,

T, = — [WMTy — Toir) + o (T} — Ty, )] + T (78)

= |

Application numérique :

T — % « (65[W/m /m/K] x (268.15[K] — 278.15[K])
—5.670 x 107% x (278.15" — 268.15"))) + 268.15[K| = 253.64[K| (—19.51°C)  (79)
Méthode 1

Pour résoudre cette question, nous allons considérer I’équation de I’évolution de la température
T(z), c’est-a-dire

_9 G%T) = Sr. (80)

Dans la couche de glace, il n’y a pas de source de chaleur (S = 0). Avec les conditions au
bord telles que T'(x = L) = T; et T'(x = 0) = T}, on obtient le profile de température, T'(z),
qui s’établit dans la couche de glace,

T(@)=(i-T) 7+ T = (1- 7) L+ %7, (81)

pour x € [L,0]. La température T, au centre de la couche, c’est-a-dire en x = z, = L/2, est
donc donnée en évaluant 81| en .. On obtient que

T, =T(x) = 5 (T, +T). (52)

Méthode 2
On peut aussi résoudre ce probleme en considérant la continuité des flux au milieu de la couche
de glace

- (Tz - TC) - 7 (Tc - TS) : (83)
On peut résoudre cette équation pour 7, pour trouver
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d) La chaleur nécessaire au refroidissement de la couche de glace durant un temps 6t est donnée

par

Q = Aqrot

(85)

avec gr donné par [70} Etant donné 1 = 0.8 et le coefficient de performance C'P, la quantité

d’énergie consommeée par le moteur électrique s’exprime comme

W_OPn_ CPn

Le prix total du refroidissement de la piste de la glace chaque jour est

Wil 1

— Dot 2 0.3
CP 736100

avec

Wiot = AQT5tj

Application numérique :

Wior = 400[m?] x 650[WW/m?] x 86400[s] ~ 2.2464 x 10'°[J]

_ 400[m?] x 650[W/m?] x 86400[s] 1 x 0.3[CHF] = 468[C H F]

P
5 0.83.6 x 105[J]

1 1

On résout I'équation de la chaleur

avec les conditions T'(z = 0) = T} et

—ko=—T(x =0) =

0 P,
ox A

pour P, = 780 kW. On integre [93| une premiere fois par rapport a x

0
7T = +1/L'
o Ce

19
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(87)

(83)

(91)

(92)
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On impose la condition 92 pour trouver la constante d’intégration C', telle que

LP;

C=—3

En intégrant une seconde fois par rapport a x, on trouve

LP,
T(z) = ———e™/L 4 D,
() oAl T

(95)

Avec la condition au bord T'(x = 0) = Ty, on dérive que le profil de température dans la glace

synthétique est donné par

LP;

(1 — e”/L) + T5.

Finalement, la température a la surface inférieure est donnée par T'(x = L) = T;

_LP,
N /ioA

T; (1—e)+Ts.

Application numérique :

o _ 0.05[m] x (300 x 10°)[W]
CT O 2.4[W/m/K]400[m?]

20

(1—e)+268[K] ~ 241.3[K] (—31.85°C).

(96)

(97)

(98)



