
Examen de physique générale II – Section SV Prof. Furno

Semestre été 2022

Exercice 1

Considérez un référentiel inertiel R avec comme origine le point spatial A. Une fusée voyage depuis
le point A vers un point B sur l’axe A−B avec une vitesse constante vfus = 0.75c (mesurée dans le
référentiel R). Les points A et B sont au repos l’un par rapport à l’autre et la distance A−B est de
d = 1.5× 1011 m dans le référentiel R.

a) Quelle est la distance A−B dans le référentiel de la fusée ?

Un faisceau de particules relativistes voyage depuis une étoile lointaine vers le point B et, ensuite,
le point A, sur l’axe A− B, à une vitesse constante vP , mesurée dans R. Au moment où l’avant du
faisceau se trouve à la position du point B, la fusée se trouve à la position du point A. L’horloge
de bord de la fusée indique que 260 s se sont écoulées depuis le moment où la fusée se trouvait à
la position du point A jusqu’au moment où la fusée rencontre l’avant du faisceau. À cet instant, la
fusée envoie un message radio vers le point A pour l’informer de l’arrivée du faisceau.

b) Calculez la vitesse du faisceau vP dans le référentiel R.

c) Dans le référentiel de la fusée, combien de temps s’écoule entre l’envoi du message radio et sa
réception au point A ?

La station Discovery est au repos dans le référentiel R. Elle se trouve entre le point A et B, sur l’axe
A−B, à une distance de 3×109 m du point A mesurée dans le référentiel de la fusée. Les astronautes
de Discovery effectuent une sortie dans l’espace et doivent être prévenus pour qu’ils puissent rentrer
dans Discovery avant l’arrivée du faisceau. Pour cela, un message radio est envoyé depuis le point A
en direction de Discovery à l’instant précis où le message radio envoyé par la fusée est reçu au point A.

d) Dans le référentiel R, combien de temps s’écoule-t-il entre l’émission du message radio par la
fusée et la réception par Discovery du message radio émis depuis le point A ?

e) En sachant qu’il faut 3 minutes (mesurées dans le référentiel R) aux astronautes pour rentrer,
est-ce qu’ils vont être prévenus suffisamment à l’avance pour se mettre en sécurité ? Considérez
que la communication entre les astronautes et Discovery est instantanée.

f) La distance entre l’avant et l’arrière du faisceau le long de l’axe A− B vaut L = 107 m dans
le référentiel du faisceau. Dans le référentiel R, combien de temps les astronautes doivent-ils
rester dans Discovery pour que le faisceau soit passé (quand l’arrière du faisceau est à la po-
sition de Discovery) ?

Une sonde se déplace perpendiculairement à l’axe A−B, à une vitesse relativiste constante vsonde =
0.6c mesurée dans le référentiel R.
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g) Quelle est la norme de la vitesse de la sonde mesurée dans le référentiel du faisceau ?

h) En sachant qu’il a fallu fournir une énergie de 1016 J pour accélérer la sonde d’une situation
de repos (dans le référentiel R) à la vitesse vsonde, quelle est la masse de la sonde ?

Indications : considérez la fusée et Discovery comme des points matériels dans l’espace, et n’ayant
aucun effet sur la propagation du faisceau et des messages radio. Vitesse de la lumière c = 3 × 108

m/s.

Corrigé

Voici ci-dessous un schéma général de l’exercice, avec les paramètres principaux (NB : ce schéma
n’est bien sûr pas à l’échelle...).

Figure 1 – Schéma général de l’exercice

a) Dans ce premier point, seuls les systèmes A − B et ”fusée” nous intéressent. Choisissons le
référentiel S pour le système A−B, la fusée étant en mouvement par rapport à lui (référentiel
S ′). On nous donne d = 1.5×1011 m, exprimée dans le référentiel S. On cherche la distance d′

dans le référentiel S ′. Il s’agit d’une contraction de longueur, en considérant un déplacement
du référentiel S ′ à une vitesse vfus = 0.75c. On trouve :

d′ =
d

γfus
=

√
1− 0.752 · 1.5× 1011 = 9.9× 1010m (1)

où γfus est le coefficient relativiste de la fusée, donné par γfus =

(√
1− v2fus

c2

)−1

.

b) La situation de cette question est représentée à la figure 2.

Figure 2 – Données et événements du point b)
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Considérons à nouveau le référentiel S pour le système R. Le but est d’exprimer toutes les
données dans ce référentiel, car nous connaissons la distance totale A − B, qui peut être
décomposée en la somme de deux distances : celle parcourue par le faisceau et celle parcourue
par la fusée. Dans le référentiel de la fusée, le temps écoulé est un temps propre, t0 = 260 s. Si
on se place dans notre référentiel S, le temps écoulé est donné par une dilatation de temps :

∆t = γfus · t0 =⇒ ∆t = 393 s (2)

Dans le référentiel S, la fusée s’éloigne à une vitesse de 0.75c. Du coup, la distance parcourue
est simplement donnée par :

xfus = vfus ·∆t = 8.84× 1010 m (3)

Comme nous connaissons la distance propre entre A et B, le faisceau de particules a dû
nécessairement parcourir le reste de celle-ci, à savoir :

xP = d− xfus =⇒ xP = 6.16× 1010 m (4)

La distance xP et le temps ∆t étant tous deux définis dans le référentiel S, la vitesse du
faisceau est simplement donnée par :

vP =
xP

∆t
=⇒ vP = 1.57× 108 m/s ≃ 0.52c (5)

Note : La réponse ci-dessus est la norme de la vitesse, une grandeur toujours positive. Ce-
pendant, la valeur négative -0.52c a aussi été acceptée si cela se justifiait au vu du référentiel
choisi.

c) La situation est représentée sur la figure 3.

Figure 3 – Données et événements du point c)

Nous avons deux événements : l’envoi du signal et la réception du signal. Nous connaissons
sa vitesse de propagation (c = 3× 108 m/s) et la distance qu’il doit parcourir (xfus, tirée du
point précédent). Du coup, le temps de propagation du signal dans le référentiel S est :

∆tR =
xfus

c
=

8.84× 1010 m

3× 108 m/s
= 294.81 s (6)
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Ce temps de propagation peut être trouvé dans le référentiel S ′ de la fusée grâce à la trans-
formée de Lorentz :

∆t′R = γfus

(
∆tR − vfus ·∆x

c2

)
= γfus

(
∆tR +

vfus ·xfus

c2

)
=⇒ ∆t′R = 780 s (7)

où v est la vitesse de la fusée dans le référentiel S et ∆x la différence de position entre les
deux événements, dans le référentiel A−B. Pour être convaincu de cette utilisation de Lorentz
(notamment pour se convaincre que ∆x < 0), voici une autre manière de réaliser le calcul.
Notons les positions et temps dans chaque référentiel et pour chaque événement (envoi et
réception) :

événement S S ′

envoi (xfus,∆t) (γfus[xfus − vfus∆t],γfus[∆t− xfus · vfus
c2

])

réception (0,∆t+∆tR) (γfus[0− vfus(∆t+∆tR)],γfus[∆t+∆tR − 0])

Pour connâıtre le temps demandé, il faut prendre la différence entre les coordonnées tempo-
relles dans S ′ :

∆t′R = γfus(∆t+∆tR − 0)− γfus

(
∆t− xfus · vfus

c2

)
(8)

= γfus

(
∆tR +

xfus · vfus
c2

)
(9)

= 780 s (10)

d) La situation est représentée sur la figure 4. Les instants t = ∆t et t = ∆tR on été représentés
comme sur la figure 3 mais en considérant le faisceau également. Tous les temps sont considérés
comme étant pris dans le référentiel A−B.

Figure 4 – Données et événements du point d)

Dans le référentiel A − B, le temps total de transmission du signal, depuis son envoi de la
fusée jusqu’à A puis jusqu’à sa réception sur Discovery, est donné par :

tT = ∆tR +
xD

c
(11)
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Attention, dans l’énoncé la distance est donnée dans le référentiel de la fusée. Il faut dès lors
la repasser en distance propre :

xD = γfus ·x′
D = 4.54× 109 m (12)

L’équation 11 devient donc :

tT = 294.81 s +
4.54× 109 m

3× 108 m/s
= 309.94 s (13)

e) Méthode 1 : De son côté, le faisceau de particules s’est propagé d’une distance xfus − xD

(c’est à dire la distance qu’il lui restait à parcourir jusqu’au point A, à laquelle il faut enlever
la distance de Discovery, se trouvant à une distance xD en avant de A) et avec une vitesse vP .
Il parcourra cette distance en un temps :

tP =
xfus − xD

vP
=

8.39× 1010 m

1.56× 108 m/s
= 535.82 s (14)

Le signal et les particules vont arriver avec une différence de temps de :

∆tPT = tP − tT = 225.89 s (15)

Ce temps est bel et bien plus grand que 3 minutes, les astronautes ont le temps de rentrer
dans la station, OUF !

Méthode 2 : Le temps total qui s’écoule avant que les astronautes ne soient en sécurité est
donné par :

∆tsafe = tT + 180 = 489.93 s (16)

Pendant cet intervalle de temps, le faisceau a parcouru une distance de :

df = ∆tsafe · vP = 7.67× 1010 m (17)

Comme df est plus petite que la distance entre son point de rencontre avec la fusée et Discovery
(dB−D = xfus − xD = 8.39 × 1010), le faisceau arrivera après que les astronautes aient pu se
mettre en sécurité.

f) La longueur propre du faisceau L0 est de 10
7 m. Cette longueur est contractée dans le référentiel

S :

LP =
L0

γP
= 8.53× 106 m (18)

En connaissant la vitesse de propagation du faisceau, le temps de passage est donné par :

tpassage =
LP

vP
= 0.054 s = 54 ms (19)

Si on considère que les astronautes rentrent immédiatement dans Discovery (dès qu’ils sont
prévenus), ils vont attendre un temps total de :

tattente = ∆tPT − 180 s + tpassage = (225.89− 180 + 0.054) s = 45.94 s (20)

Note : La réponse tpassage seule a aussi été acceptée.
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g) Choisissons S, le référentiel A − B et S ′, le référentiel du faisceau. Nous savons que chaque
élément se déplace dans le référentiel S comme suit :

Faisceau ux = −vP uy = 0
Sonde vx = 0 vy = vsonde

Pour calculer la vitesse de la sonde vue par le faisceau dans son référentiel (S ′), on utilise les
tranformations de Lorentz inverses avec v = vP . Cela donne, pour chaque axe :

u′
x =

vx − v

1− vvx
c2

=
0− vP
1− 0

= −0.52c (21)

u′
y =

vy
γP · (1− vvx

c2
)
=

vsonde
γP

= 0.51c (22)

(23)

Dès lors, la norme de la vitesse vue par le faisceau est :

u′ =
√

u′2
x + u′2

y = 0.73c (24)

h) Nous connaissons l’énergie et la vitesse de la sonde, il suffit simplement d’appliquer la formule
vue au cours :

E = m0c
2(γsonde − 1) ⇐⇒ m0 =

E

c2(γsonde − 1)
= 0.44 kg (25)
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Exercice 2

Un artiste vient de compléter son dernier chef-d’oeuvre : deux cubes en aluminium de masse mAl = 2
kg chacun, qui, à l’état initial, sont à la température de TAl,in = 600◦C.
Pour refroidir le premier cube, l’artiste dispose d’un récipient à parois rigides et thermiquement iso-
lantes, qui se trouve au niveau de la mer. Le récipient est ouvert vers le haut et contient, dans l’état
initial, me = 2 kg d’eau à une température Te,in = 25◦C. Le premier cube est immergé dans l’eau
et l’échange de la chaleur se passe uniquement entre l’eau et le cube jusqu’à atteindre l’état final
d’équilibre thermique entre les deux.

a) Montrez que la température du système cube + eau est Tsys,f = 100◦C dans l’état final.

b) Quelle masse mvap d’eau a été évaporée entre l’état initial et l’état final ?

c) Quelle est la variation d’entropie ∆Ssys du système cube + eau (liquide et vapeur) entre l’état
initial et l’état final ?

d) À l’état final, quel est le volume Vsys occupé par le système composé du cube et de l’eau
liquide restante ?

Pour refroidir le deuxième cube, l’artiste dépose celui-ci dans un deuxième récipient (situé au niveau
de la mer et identique au premier), qui est instantanément fermé de manière hermétique avec un
piston mobile de masse négligeable. Le piston peut coulisser sans frottement et est thermiquement
isolant. Dans cet état initial, le récipient contient uniquement 10 moles d’air à une température
Ta,in = 25◦C et le cube, qui est à une température TAl,in = 600◦C. Le cube et l’air échangent de
la chaleur lentement de façon à ce que le piston soit en tout temps en équilibre mécanique, jusqu’à
atteindre l’état final, où le cube et l’air sont à l’équilibre thermique.

e) Calculez la température Tsys,f du système cube + air dans l’état final.

f) Quel est le volume occupé par l’air Vf dans l’état final et quels sont le travail, W, et la chaleur,
Q, échangés avec l’extérieur du récipient fermé ?

Indications : chaleur spécifique de l’aluminium cAl = 897 J/(K kg) ; chaleur spécifique de l’eau
ce = 4186 J/(K kg) ; chaleur latente de vaporisation de l’eau Le = 2256 × 103 J/kg ; coefficient
d’expansion linéaire de l’aluminium α = 2× 10−5 ◦C−1 ; densité de l’eau ρe (exprimée en kg / m3) à
la température T (exprimée en ◦C) ρe = 1001.4− 0.1011× T − 0.0033× T 2 ; densité de l’aluminium
à 25◦C ρAl = 2700 kg/m3. Pour les points e) et f), on négligera l’expansion thermique du cube et on
traitera l’air comme un gaz parfait diatomique (avec uniquement des degrés de liberté translationnels
et rotationnels). Constante des gaz parfaits R = 8.314 J/K/mol.

Corrigé

a) Montrez que la température, Tsys,f , du système cube + eau est 100◦C dans l’état final.

En étant au niveau de la mer le point d’ébullition de l’eau est 100◦C. On peut imaginer trois
possibilités :
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1. La température finale est comprise entre 25◦C et 100◦C. Le cube d’aluminium chauffe l’eau,
mais pas suffisamment pour atteindre le point d’ébullition.

2. La température finale est de 100◦C, et une certaine quantité d’eau sera évaporée.

3. La température finale est entre 100◦C et 600◦C, et toute l’eau est évaporée.

Pour décider lequel des scénarios sera réalisé, on commence par comparer la quantité de cha-
leur que le bloc d’aluminium peut transférer à l’eau, et la chaleur nécessaire pour chauffer
l’eau jusqu’à 100◦C.

La chaleur libérée par le bloc lorsque sa température descend de 600◦C à 100◦C est

∆QA = cAlmAl(600− 100)◦C ≈ 897 kJ (26)

La chaleur nécessaire pour chauffer l’eau jusqu’à son point d’ébullition est

∆Qe = ceme(100− 25)◦C ≈ 628 kJ (27)

L’eau atteindra donc son point d’ébullition, et une partie se transformera en vapeur. Pour
évaporer toute l’eau dans le récipient, la chaleur nécessaire serait

meLe = 4512 kJ (28)

On conclut alors que le bloc va chauffer l’eau jusqu’à Tsys,f = 100◦C mais qu’elle ne va pas
complètement s’évaporer.

b) Quelle masse mvap d’eau a été évaporée entre l’état initial et l’état final ?

Pour trouver la masse d’eau évaporée, on égalise la chaleur donnée par le bloc à celle reçue
par l’eau

cAlmAl(TAl,in − Tsys,f ) = ceme(Tsys,f − Te,in) +mvapLe (29)

mvap =
(TAl,in − Tsys,f )cAlmAl − (Tsys,f − Te,in)ceme

Le

≈ 0.12 kg (30)

c) Quelle est la variation d’entropie ∆Ssys du système cube + eau (liquide et vapeur) entre l’état
initial et l’état final ?

De manière générale, la variation d’entropie est donnée par la formule suivante :

dS =
δQ

T
(31)

On exprime la chaleur δQ échangée lors du changement de la température et lors de l’évaporation

δQ = c m dT

δQ = Le dmvap
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On peut maintenant écrire la variation totale d’entropie du système eau+bloc, en faisant
attention d’exprimer les températures en degrés Kelvin

∆Ssys =

∫ Tsys,f

Te,in

ceme

T
dT +

∫ Tsys,f

TAl,in

cAlmAl

T
dT +

∫ mvap

0

Ledm

Tsys,f

(32)

∆Ssys = ceme ln

(
Tsys,f

Te,in

)
+ cAlmAl ln

(
Tsys,f

TAl,in

)
+

mvapLe

Tsys,f

(33)

∆Ssys ≈ (1879− 1526 + 721) J/K ≈ 1075 J/K (34)

d) À l’état final, quel est le volume Vsys occupé par le système composé du cube et de l’eau
liquide restante ?

Le volume occupé par l’eau et le bloc dépend de leur température. Le volume d’eau peut être
calculé en utilisant l’expression pour sa densité ρe donnée dans l’énoncé

Ve =
me −mvap

ρe
=

me −mvap

1001.4− 0.1011Tsys,f − 0.0033T 2
sys,f

≈ 2.0 · 10−3 m3 (35)

Le volume du bloc est trouvé en utilisant le coefficient de dilatation α, qui nous permet de
calculer le coefficient d’expansion volumique β = 3α.

VA = V0(1 + 3α∆T ) (36)

avec V0 le volume ”initial” du bloc. Attention, puisqu’on connâıt la densité de l’aluminium
à 25◦C, on écrira le volume V0 pour le bloc à 25◦C et la différence de température ∆T =
Tsys,f − 25.

VA =
mAl

ρA
(1 + 3α(Tsys,f − 25◦C)) ≈ 7.4 · 10−4 m3 (37)

Le volume total occupé par le système est simplement la somme des volumes occupés par l’eau
et le bloc

Vsys = Ve + VA ≈ 2.7 · 10−3 m3 (38)

e) Calculez la température Tsys,f du système cube + air dans l’état final.

Dans cette deuxième partie de l’exercice, la chaleur cédée par le bloc servira à chauffer l’air,
mais aussi à augmenter son volume, puisque le piston peut coulisser. L’augmentation de volume
correspond donc à un travail W effectué par l’air. En considérant le système air + bloc, on
peut écrire le premier principe comme suit

cAlmAl(TAl,in − Tsys,f ) = CV n(Tsys,f − Ta,in) +W (39)

avec CV = 5R/2. Notez qu’on aurait pu simplement égaliser les chaleurs échangées entre bloc
et air en utilisant les chaleurs spécifiques à pression constante.
Le travail nécessaire pour augmenter le volume de l’air est donné par

W =

∫
pdV = patm · (Vf − Vi) (40)
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où on a supposé que la pression à l’intérieur du cylindre reste égale à la pression atmosphérique,
puisque le piston est en équilibre mécanique en tout temps. Pour trouver le changement de
volume, on utilise la loi des gaz parfaits

pV = nRT =⇒ (Vf − Vi) =
nR

patm
· (Tsys,f − Ti) (41)

Le travail W vaut donc

W = nR(Tsys,f − Ti) (42)

On peut finalement exprimer la température finale à partir de l’équation 39

Tsys,f =
TAl,incAlmAl + Ta,in(CV n+ nR)

cAlmAl + CV n+ nR
≈ 519.7◦C = 792.15 K (43)

f) Quel est le volume occupé par l’air Vf dans l’état final et quels sont le travail, W, et la chaleur,
Q, échangés avec l’extérieur du récipient fermé ?

Le travail W a été exprimé au point précédent :

W = nR(Tsys,f − Ta,in) ≈ 41.1 kJ (44)

La chaleur Q échangée avec l’extérieur est nulle puisqu’on suppose que le récipient est isolé
thermiquement.

Q = 0 (45)

Le volume final Vf peut être calculé en utilisant la loi des gaz parfaits :

Vf =
nRTsys,f

patm
≈ 0.651 m3 (46)
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Exercice 3

Un gaz parfait monoatomique (n = 10 moles) subit un cycle constitué des transformations suivantes,
que l’on considère comme réversibles :

1) Transformation isobare d’un état A avec volume VA = 0.4 m3, pression pA = 2.49 bar à un
état B avec VB = 0.1 m3.

2) Transformation isochore de l’état B à l’état C avec pression pC = p < pA.

3) Transformation isobare de l’état C à l’état D.

4) Transformation isochore de l’état D à l’état A.

a) Dessinez le cycleABCDA dans un diagramme p−V . S’agit-il d’un cycle moteur ou réfrigérateur ?

Considérez le cycle ABCDA tel que p = 0.83 bar.

b) Calculez la température T , le volume V , et la pression p dans chaque état A,B,C,D.

c) Calculez la chaleur échangée et le travail lors de chaque transformation 1), 2), 3), 4).

d) Représentez et comparez de manière qualitative les distributions des vitesses des atomes du
gaz aux deux températures extrêmes du cycle : vous discuterez en particulier de quelle distri-
bution il s’agit, de la position relative des maxima, de la largeur à mi-hauteur et de l’intégrale
de chaque distribution.

Considérez maintenant les transformations 1), 2), 3), 4) avec la pression p à déterminer.

e) Calculez la pression p telle que le changement d’enthalpie du gaz entre l’état C et l’état D
vaut ∆HCD = 124500 J.

f) Calculez la pression p telle que TD = TB.

g) Le changement d’enthalpie du gaz sur le cycle ABCDA est plus grand pour les conditions du
point e) ou f) ? Justifiez votre réponse.

h) Si la transformation 1) est remplacée par une transformation irréversible entre les deux mêmes
états A et B, quel est le changement d’enthalpie du gaz sur le cycle ABCDA ? Justifiez votre
réponse.

Considérez maintenant les transformations 1), 2), 3), 4) telles que p/pA → 0. Soit QCD et QDA les
chaleurs échangées lors des transformations 3) et 4) respectivement, et Wcycle le travail total sur cycle
ABCDA.

i) Montrez que

lim
p/pA→0

|QCD +QDA|
|Wcycle|

= 2.
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Indications : on arrondit la valeur de la constante des gaz parfaits à R = 8.3 J/K/mol.

Corrigé

a) Le cycle est représenté sur la figure ci-dessous. Il s’agit d’un un cycle réfrigérateur car il est
parcouru dans le sens anti-horaire.

b) Pour calculer P, V et T dans les états A, B, C, D, on va utiliser la loi des gaz parfaits après
avoir converti la pression en [Pa].

Point A :

VA = 0.4 m3

pA = 2.49 bar = 2.49× 105 Pa

TA =
pAVA

nR
= 1200 K

(47)

Point B :

VB = 0.1 m3

pB = pA = 2.49× 105 Pa

TB =
pBVB

nR
= 300 K

(48)

Point C :

VC = VB = 0.1 m3

pC = 0.83 bar = 0.83× 105 Pa

TC =
pCVC

nR
= 100 K

(49)
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Point D :

VD = VA = 0.4 m3

pD = pC = 0.83× 105 Pa

TD =
pDVD

nR
= 400 K

(50)

c) Pour trouver la chaleur échangée et le travail fait par ou sur le gaz lors de chaque transforma-
tion 1, 2, 3, 4, on utilise le premier principe de la thermodynamique et la définition du travail
δW = pδV .

Transformation 1 (A→B) :

WAB = pA(VB − VA) = −74.700 kJ (51)

∆UAB = QAB −WAB

QAB = ∆UAB +WAB = nCV (TB − TA) + pA(VB − VA) = −186.750 kJ (52)

Où on a utilisé CV = 3R/2, pour gaz monoatomique. Étant donné qu’il s’agit d’une
transformation isobare, on aurait aussi pu utiliser :

QAB = nCP (TB − TA) (53)

Avec CP = 5R/2, toujours pour gaz monoatomique.
Transformation 2 (B→C) :

WBC = 0 (54)

∆UBC = QBC

QBC = nCV (TC − TB) = −24.900 kJ (55)

Transformation 3 (C→D) :

WCD = pC(VD − VC) = 24.900 kJ (56)

∆UCD = QCD −WCD

QCD = ∆UCD +WCD = nCV (TD − TC) + pC(VD − VC) = 62.250 kJ (57)

Étant donné qu’il s’agit d’une transformation isobare, on aurait aussi pu utiliser :

QCD = nCP (TD − TC) (58)

Transformation 4 (D→A) :
WDA = 0 (59)

∆UDA = QDA

QDA = nCV (TA − TD) = 99.600 kJ (60)
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d) Les températures extrêmes calculées au point b) sont TC = 100 K et TA = 1200 K. La vitesse
des atomes du gaz est décrite par une distribution de Maxwell–Boltzmann. Le maximum
de la fonction de distribution pour la température plus élevée correspond à une vitesse plus
élevée que celle de la température plus basse : il sera plus à droite. La largeur à mi-hauteur
de la fonction de distribution est plus grande pour une plus haute température car un plus
grand nombre de molécules ont une vitesse élevée alors qu’à basse température la distribution
est plus étroite car la majorité des molécules sont à une vitesse plus basse. L’intégrale des
deux distributions est toujours égale à 1 car elles sont normalisée par rapport au nombre de
molécules considérées dans notre gaz, qui est 10 moles dans ce cas. On pourrait également
utiliser non pas la probabilité, mais le nombre d’atomes ou de molécules qui ont une certaine
vitesse. Dans ce cas l’intégrale serait égale au nombre total de molécules ou d’atomes dans notre
système. Les fonctions de distribution pour les deux températures peuvent être qualitativement
dessinées comme suit :

e) L’enthalpie est définie comme H = U + pV. Une variation d’enthalpie peut être écrite comme
∆H = ∆U + ∆(pV) = ∆U + V∆p + p∆V. Dans le cas d’une transformation isobare, telle
que la transformation CD, le terme V∆p est nul, donc ∆H = Q :

∆HCD = ∆UCD + p∆VCD = nCv(TD − TC) + p(VD − VC) (61)

On utilise la loi des gaz parfaits pour remplacer les températures avec la pression p et le
volume, et on utilise CV = 3R/2 pour un gaz monoatomique :

∆HCD = n
3

2
R(

pVD

nR
− pVC

nR
) + p(VD − VC) (62)

∆HCD = (
3

2
+ 1)p(VD − VC) = p

5

2
(VD − VC) (63)

p =
2∆HCD

5(VD − VC)
= 1.66× 105 Pa (64)

f) Pour calculer p, on va utiliser la loi des gaz parfaits avec TD=TB.

p =
nRTD

VD

= 0.62× 105 Pa (65)
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g) L’enthalpie est une variable d’état donc il n’y a pas de variation tout au long du cycle.

∆Hcycle = 0 (66)

h) Mêmes considérations qu’à la question g).

∆Hcycle = 0 (67)

i) Pour démontrer cette limite il suffit de remplacer les températures par la pression et le volume,
d’utiliser VA = 4VB et d’expliciter p/pA :

lim
p/pA→0

|QCD +QDA|
|Wcycle|

=

lim
p/pA→0

∣∣∣∣QCD +QDA

WAB +WCD

∣∣∣∣ =
lim

p/pA→0

∣∣∣∣nCP (TD − TC) + nCV (TA − TD)

pA(VB − VA) + p(VD − VC)

∣∣∣∣ =
lim

p/pA→0

∣∣∣∣ 52nR(pVD

nR
− pVC

nR
) + 3

2
nR(pAVA

nR
− pVD

nR
)

pA(VB − VA) + p(VA − VB)

∣∣∣∣ =
lim

p/pA→0

∣∣∣∣ 5
2
p(VA − VB) +

3
2
VA(pA − p)

pA(VB − VA) +
p
pA
(VA − VB)

∣∣∣∣ =
lim

p/pA→0

∣∣∣∣ 52 p
pA
(VA − VB) +

3
2
VA

pA
pA
(1− p

pA
)

(VA − VB)(
p
pA

− 1)

∣∣∣∣ =
lim

p/pA→0

∣∣∣∣ 52 p
pA
(VA − VB) +

3
2
VA(1− p

pA
)

(VA − VB)(
p
pA

− 1)

∣∣∣∣ =∣∣∣∣ 3
2
VA

VB − VA

∣∣∣∣ =∣∣∣∣ 3
2
4VB

VB − 4VB

∣∣∣∣ =∣∣∣∣ 3
2
4

−3

∣∣∣∣ =
| − 2| = 2 (68)
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Exercice 4

L’entièreté du sol d’une patinoire est constituée d’une piste de glace (superficie A = 400 m2, épaisseur
L = 5 cm, conductivité thermique de la glace κg = 2.4 W/m/K). La surface supérieure de la glace est
à la température Ts = -5◦C. La surface inférieure de la glace est maintenue à la température Ti par
un frigo. Les murs et le toit de la patinoire sont à une température égale à celle de l’air à l’intérieur
de la patinoire, Tair = 5◦C.
En sachant que les températures ne changent pas au cours du temps :

a) Calculez la température de la surface inférieure de la glace, Ti, dans le cas où la surface
supérieure de la glace échange de la chaleur par convection avec l’air ambiant (négligez tout
rayonnement).

b) Calculez la température de la surface inférieure de la glace, Ti, dans le cas où la surface
supérieure de la glace échange de la chaleur par convection avec l’air ambiant ainsi que par
rayonnement avec les murs et le toit de la patinoire. Traitez la glace, les murs et le toit comme
des corps noirs.

c) Montrez que la température à mi-distance entre la surface inférieure et supérieure de la piste
de glace est donnée par Tc = (Ti + Ts)/2.

Le frigo a un coefficient de performance, CP = 5, et fonctionne avec un moteur électrique qui conver-
tit 80% de l’énergie électrique en énergie mécanique. Le prix de l’énergie électrique est de 0.3 CHF
pour 1 kWh.

d) Combien coûte l’utilisation du frigo, par jour, pour les conditions du point a) ?

Considérez ensuite une piste de glace synthétique de mêmes dimensions que la piste de glace des
points précédents. La glace synthétique a une conductivité thermique κ(x) = κg exp (−x/L), avec x
la coordonnée selon l’axe perpendiculaire à la piste de glace, telle que x = 0 à la surface supérieure
et x = L à la surface inférieure. En sachant que, en conditions stationnaires, la conduction de la
chaleur à l’intérieur de la glace synthétique est décrite par l’équation suivante :

d

dx

[
κ(x)

dT (x)

dx

]
= 0, (69)

e) Calculez la température à la surface inférieure, telle que T (0) = −5◦C et que la puissance
thermique à travers la surface supérieure soit de 300 kW.

Indications : la piste de glace est traitée en géométrie plane. Le transport de la chaleur à travers les
surfaces verticales de la piste est négligé. Les murs et le toit ont une épaisseur négligeable. Coefficient
de transfert de la chaleur par convection glace-air h = 65W/m2/K. Constante de Stefan-Boltzmann
σB = 5.7× 10−8 W/m2/K4.

Corrigé
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a) Dans le cas stationnaire, l’égalité de puissance thermique à travers la surface supérieure s’ap-
plique. Le flux de chaleur est donné par

qT = −κg
∂

∂x
T (x) = κg

(Ti − Ts)

L
. (70)

Dans le régime stationnaire, on a l’égalité des flux de chaleurs

AqT = STA, (71)

où AqT est la puissance totale à travers la couche supérieure de la glace par diffusion, et
STA est la puissance reçue sur la couche supérieure. On considère les cas où la piste de glace
échange de la chaleur par convection avec l’air ambiant. Dans ce cas, on a que

AST = Ah(Ts − Tair). (72)

L’égalité des flux devient alors

Aκg
(Ti − Ts)

L
= Ah(Ts − Tair), (73)

Avec 70, on résout pour Ti,

Ti =
Lh

κg

(Ts − Tair) + Ts. (74)

Application numérique :

Ti =
0.05[m]× 65[W/m/m/K]

2.4[W/m/K]
× (268.15[K]− 278.15[K]) + 268.15[K] = 254.6[K] (−18.54◦C)

(75)

et

qT =
2.4[W/m/K]

0.05[m]
× (254.6[K]− 268.15[K]) = −650[J/m2/s] (76)

b) On considère les cas où la piste de glace échange de la chaleur par convection avec l’air ambiant
et par rayonnement thermique. Dans ce cas, le bilan des puissances est

qTA = Ah(Ts − Tair) + Aσ(T 4
s − T 4

air). (77)
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Dans cette formule nous avons utilisé l’hypothèse que la glace et les parois rayonnent comme
des corps noirs.
On en déduit alors la température Ti,

Ti =
L

κ

[
h(Ts − Tair) + σ

(
T 4
s − T 4

air

)]
+ Ts (78)

Application numérique :

Ti =
0.05[m]

2.4[W/m/K]
× (65[W/m/m/K]× (268.15[K]− 278.15[K])

−5.670× 10−8 × (278.154 − 268.154))
)
+ 268.15[K] = 253.64[K] (−19.51◦C) (79)

c) Méthode 1
Pour résoudre cette question, nous allons considérer l’équation de l’évolution de la température
T (x), c’est-à-dire

− ∂

∂x

(
κ
∂

∂x
T

)
= ST . (80)

Dans la couche de glace, il n’y a pas de source de chaleur (ST = 0). Avec les conditions au
bord telles que T (x = L) = Ti et T (x = 0) = Ts, on obtient le profile de température, T (x),
qui s’établit dans la couche de glace,

T (x) = (Ti − Ts)
x

L
+ Ts =

(
1− x

L

)
Ts + Ti

x

L
, (81)

pour x ∈ [L, 0]. La température Tc au centre de la couche, c’est-à-dire en x = xc = L/2, est
donc donnée en évaluant 81 en xc. On obtient que

Tc = T (xc) =
1

2
(Ts + Ti) . (82)

Méthode 2
On peut aussi résoudre ce problème en considérant la continuité des flux au milieu de la couche
de glace

κg

L
(Ti − Tc) =

κg

L
(Tc − Ts) . (83)

On peut résoudre cette équation pour Tc pour trouver

Tc =
1

2
(Ts + Ti). (84)
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d) La chaleur nécessaire au refroidissement de la couche de glace durant un temps δt est donnée
par

Q = AqT δt (85)

avec qT donné par 70. Etant donné η = 0.8 et le coefficient de performance CP , la quantité
d’énergie consommée par le moteur électrique s’exprime comme

W =
Q

CP

1

η
=

AqT δt

CPη
. (86)

Le prix total du refroidissement de la piste de la glace chaque jour est

P =
Wtot

CP

1

η

1

3.6× 106
× 0.3 (87)

avec

Wtot = AqT δtj (88)

Application numérique :

Wtot = 400[m2]× 650[W/m2]× 86400[s] ≃ 2.2464× 1010[J ] (89)

P =
400[m2]× 650[W/m2]× 86400[s]

5

1

0.8

1

3.6× 106[J ]
× 0.3[CHF ] = 468[CHF ] (90)

e) On résout l’équation de la chaleur

−κ0
∂

∂x

(
e−x/L ∂

∂x
T

)
= 0. (91)

avec les conditions T (x = 0) = Ts et

−κ0
∂

∂x
T (x = 0) =

Ps

A
, (92)

pour Ps = 780 kW. On intègre 93 une première fois par rapport à x

∂

∂x
T = Ce+x/L. (93)

19



On impose la condition 92 pour trouver la constante d’intégration C, telle que

C = −LPs

κ0A
. (94)

En intégrant une seconde fois par rapport à x, on trouve

T (x) = −LPs

κ0A
e+x/L +D. (95)

Avec la condition au bord T (x = 0) = Ts, on dérive que le profil de température dans la glace
synthétique est donné par

T (x) =
LPs

κ0A

(
1− e+x/L

)
+ Ts. (96)

Finalement, la température à la surface inférieure est donnée par T (x = L) = Ti

Ti =
LPs

κ0A
(1− e) + Ts. (97)

Application numérique :

Ti =
0.05[m]× (300× 103)[W ]

2.4[W/m/K]400[m2]
(1− e) + 268[K] ≃ 241.3[K] (−31.85◦C). (98)
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