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Exercice 1
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a) Le schéma du problème est donné dans la figure dessus. On aurait aussi pu comprendre
la donnée de sorte que le bâton est initialement orienté vers le haut. Ceci ne change rien
pour les parties b) et c), mais donne une solution différente pour les points d) et e).

b) Comme la collision est inélastique, l’énergie cinétique n’est pas conservée pendant le choc.
De plus, la quantité de mouvement du système bâton-projectile n’est pas conservée non
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plus étant donné que l’axe de rotation exerce une force extérieure sur le système via
le bâton. Par contre, le moment cinétique LO par rapport au point de rotation O est
conservé.

Avant le choc, seul le projectile a un moment cinétique non-nul. Par rapport au point O,
il est donné par

Lp,O = xmv (1)

Juste après le choc, le moment cinétique du bâton avec le projectile est donné par

Lbp,O = Ibp,Oω (2)

Ici, Ibp,O est le moment d’inertie du bâton avec le projectile, par rapport au point O.
On sait que Ibp,O = Ib,O + Ip,O, la somme du moment d’inertie du bâton et du moment
d’inertie du projectile. L’indication donne Ib,O = ML2/3. Le projectile peut être considéré
comme un point de masse. Donc, Ib,O = mx2. La conservation du moment cinétique donne
alors :

Lp,O = Lbp,O ⇒ ω =
xmv

ML2

3
+mx2

(3)

On cherche x0 ∈ [0, L] tel que ω est maximale. Pour x = 0, on a ω = 0. Donc, ω est
maximale soit à un point où dω

dx
= 0, soit pour x = L. Avec l’expression (3), la condition

dω
dx

= 0 devient

dω

dx
=
mv
(
ML2

3
+mx2

)
− xmv2xm(

ML2

3
+mx2

)2 = 0 (4)

Avec m = M/2, on trouve que dω
dx

= 0 pour x =
√

2/3L. On reste donc avec deux

candidats pour x0 : soit x0 =
√

2/3L, soit x0 = L. Une possibilité de trouver le bon x0

est d’introduire les deux expressions dans l’expression (3) de ω pour tester lequel donne
la valeur maximale de ω. Mais il y a un argument plus direct : Comme ω = 0 pour x = 0
et pour x→∞, et comme dω

dx
= 0 seulement pour x =

√
2/3L, on sait qu’on a trouvé le

maximum. Donc,
x0 =

√
2/3L = 1.22 m. (5)

c) Introduisant x0 =
√

2/3L dans l’expression (3), on trouve que

ωmax =

√
2
3
LM

2
v

ML2

3
+ M

2
2
3
L2

=
v

2
√

2
3
L
' 3.27 rad s−1. (6)

d) Après l’impact, l’énergie mécanique du système est conservée. Juste après l’impact du
projectile, l’énergie cinétique du système est donnée par

Ecin =
1

2
Ibp,Oω

2
max (7)

Quand le bâton a atteint l’angle de déviation maximal Θ0, cette énergie cinétique s’est
transformée en énergie potentielle

Epot = (M +m)g∆hCM (8)
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Ici ∆hCM est le changement de hauteur du centre de masse du bâton (avec le projectile)
entre sa position verticale d’origine et Θ0. On trouve

Ecin = Epot ⇒ ∆hCM =
1
2
Ibp,Oω

2
max

3
2
Mg

= 0.54 m (9)

avec Ibp,O = M
2
x2

0 + ML2

3
= 0.375 kg · m2. La distance du centre de masse par rapport au

point O est donnée par

xCM =
x0

M
2

+ L
2
M

M
2

+M
= 0.91 m (10)

La relation entre Θ0, ∆hCM et xCM est donnée par (voir la figure ci-dessus)

cos(Θ0) =
xCM −∆hCM

xCM

(11)

et Θ0 est donc donné par

Θ0 = acos

(
xCM −∆hCM

xCM

)
= 66.3◦ (12)

Si l’on comprend la donnée de sorte que le bâton est initialement orienté vers le haut, le
système bâton plus projectile fait des tours complets autour de l’axe de rotation et Θ0

vaut 2π (ou l’infini).

e) Le bâton (avec projectile) est un pendule physique qui fait des oscillations (non-amorties)
autour de sa position d’équilibre θ = 0 où θ est l’angle entre le bâton et la verticale.
Comme Θ0 n’est pas petit, ces oscillations ne sont pas harmoniques. Dans le cas où l’on a
supposé que le bâton est initialement orienté vers le haut, le bâton fait des tours entiers
avec une vitesse angulaire variable.
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Exercice 2

Dans cet exercice, on définit trois référentiels : le référentiel R du désert (dans lequel les lampes
sont au repos), le référentiel R′ du cycliste qui circule à une vitesse v dans le même sens que
la propagation des flashs lumineux, et le référentiel R′′ le référentiel du cycliste qui roule à une
vitesse −v par rapport à R.

a) On doit déterminer le temps τ ′ et la distance ∆x′ qui séparent les flashs dans le référentiel
R′ du cycliste. On s’intéresse donc à deux évènements : évènement 1 = la lampe 1 s’allume ;
évènement 2 = la lampe voisine s’allume. Dans le référentiel R du désert, on choisit les
origines de l’axe x et du temps t telles que ces évènements ont les coordonnées

(x1, t1) = (0 m, 0 s) (13)

(x2, t2) = (d, τ) (14)

On a donc :
∆x = x2 − x1 = d = 10 m et ∆t = t2 − t1 = τ = 5 ns (15)

On utilise ensuite les transformations de Lorentz qui lient les coordonnées d’espace et de
temps entre un référentiel R et un référentiel R′ en translation par rapport à R avec une
vitesse v dans la direction positive des x (ce qui correspond tout à fait à la situation que
l’on traite ici) :

x = γ (x′ + vt′) (16)

y = y′ (17)

z = z′ (18)

t = γ

(
t′ +

vx′

c2

)
(19)

où le coefficient relativiste s’écrit :

γ =
1√

1− v2

c2

= 1.25 (20)

On inverse cette relation pour obtenir les coordonnées dansR′ en fonction des coordonnées
dans R :

x′ = γ (x− vt) (21)

t′ = γ
(
t− vx

c2

)
(22)

Pour les évènements qui nous intéressent (flash 1 suivi de flash 2), on obtient alors

d′ = ∆x′ = γ (∆x− v∆t) = 11.375 m (23)

τ ′ = ∆t′ = γ

(
∆t− v∆x

c2

)
= −18.75 ns (24)

Donc, dans le référentiel du cycliste, les évènements « flashs successifs » sont séparés par
une distance plus grande que dans le référentiel du désert. Ces évènements sont séparés
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par un intervalle de temps τ ′ = ∆t′ < 0, ce qui indique que les évènements ont lieu dans
un ordre inverse dans le référentiel R′ du cycliste (ce qui est tout à fait permis étant
donné qu’aucun lien de cause à effet ne lie les flashs successifs).
Les lampes étant au repos dans le référentiel du désert, la distance d qui les sépare est
une longueur propre. La longueur propre d′ qui sépare les lampes dans le référentiel R′
du cycliste (à ne pas confondre avec la distance entre les flashs qui sont des évènements)
vaut donc :

d′ =
d

γ
= 8 m (25)

On peut aussi trouver ce résultat à partir des transformations de Lorentz en considérant
que pour mesurer la distance entre les lampes dans le référentiel du cycliste, le cycliste doit
trouver une règle (ou tout autre objet) de longueur d′ telle que ses extrémités s’alignent
avec deux lampes voisines simultanément. En d’autres termes, les évènements « l’extré-
mité a de la règle s’aligne avec une lampe » et « l’extrémité b de la règle s’aligne avec une
lampe voisine » sont séparé par ∆x = d′ et ∆t′ = 0 s dans le référentiel R′. On sait que
ces évènements sont séparés par une distance ∆x = d dans le référentiel R du désert. (Par
contre, ils ne sont pas simultanés dans R.) Avec la première transformation de Lorentz,
on obtient

∆x = γ (∆x′ + v∆t′) ⇒ d′ = ∆x′ =
∆x

γ
=
d

γ
= 8 m (26)

b) Dans ce cas, la vitesse relative du référentiel R′′ par rapport à R vaut −v, ce qui ne
change pas la valeur de γ : γ(−v) = γ(v). La distance d′′ entre les lampes dans le R′′ est
donc égale à d′ dans R′ :

d′′ =
d

γ
= d′ = 8 m (27)

Que le cycliste voyage dans une direction ou une autre, il observe un contraction des
longueurs. Quant à la distance et au temps qui séparent les flashs, leur expression est
similaire à celle du point a), mais avec une vitesse relative opposée :

d′ = ∆x′ = γ (∆x+ v∆t) = 13.625 m (28)

τ ′ = ∆t′ = γ

(
∆t+

v∆x

c2

)
= 31.25 ns (29)

c) Pour que les flashs soient simultanés dans le référentiel R′, il faut que τ ′ = ∆t′ = 0 :

0 = ∆t′ = γ

(
∆t− v∆x

c2

)
= γ

(
τ − vd

c2

)
⇒ τ =

vd

c2
(30)

d) Pour que le cycliste voie les flashs, il faut que la lumière soit émise puis qu’elle se propage
jusqu’à ses yeux. En considérant que le cycliste est aligné avec une lampe quand celle-ci
émet (évènement 1 : (X ′1, T

′
1) = (0 m, 0 ns)), la lampe suivante à une distance d′ de la

première « émettra » son flash (évènement 2) au temps T ′2 = τ ′ = −18.75 ns « après »
la première lampe (i.e. avant la première lampe). Pendant cet intervalle de temps, les
lampes se sont déplacées par rapport au cycliste d’une distance D′ = −vτ ′ = 3.375 m.
L’évènement 2 a donc lieu à la position X ′2 = d′ + D′ = 14.75 m. Finalement, la lumière
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de la deuxième lampe atteint l’oeil du cycliste (évènement 3) au point X ′3 = 0 m, toujours
à l’origine du référentiel. La lumière émise par la deuxième lampe doit donc parcourir
une distance ∆X ′2,3 = X ′3−X ′2 à une vitesse −c pour atteindre l’oeil du cycliste après un

temps ∆T ′3,2 =
∆X′

2,3

−c ' 49.2 ns. Finalement, le cycliste voit les flashs avec un intervalle de
temps :

∆T ′1,3 = ∆T ′1,2 + ∆T ′2,3 = −18.75 ns + 49.2 ns ' 30.4 ns (31)

Exercice 3

a) Il s’agit d’un cycle moteur. En effet, le cycle est parcouru dans le sens horaire, de sorte
que le travail fournit par le gaz lors des transformations AB et BC (représenté par la
surface sous les courbes AB et BC) est plus élevé que le travail reçu par le gaz lors des
transformations CD et DA.

b) On calcule la pression, la température et le volume du gaz aux états A, B, C et D :
• Etat A. La pression et le volume sont donnés :

pA = 12 atm = 1215600 Pa et VA = 3 L = 3 · 10−3 m3 (32)

La température en A est calculée grâce à la loi des gaz parfaits :

pAVA = nRTA ⇒ TA =
pAVA
nR

= 548.3 K (33)

où n = 0.8 mol et R est la constante des gaz parfaits.
• Etat B. Le volume est donné :

VB = 12 L = 12 · 10−3 m3 (34)

La transformation AB étant isotherme, la température en B est égale à la température
en A :

TB = TA = 548.3 K (35)

On utilise ensuite la loi des gaz parfaits pour déterminer la pression à l’état B :

pBVB = nRTB ⇒ pB =
nRTB
VB

= 303900 Pa = 3 atm (36)

• Etat C. La pression est donnée :

pC = 1 atm ' 101300 Pa (37)

La transformation BC étant adiabatique, les pressions et volumes en B et C sont liés
par :

pBV
γ
B = pCV

γ
C (38)

où γ est la constante adiabatique. Le gaz étant mono-atomique, ses molécules n’ont
que ν = 3 degrés de liberté, i.e. les degrés de liberté liés à la translation. La constante
adiabatique vaut donc :

γ =
ν + 2

ν
=

5

3
(39)
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On obtient alors le volume à l’état C :

VC = VB

(
pB
pC

)1/γ

' 23.2 L = 23.2 · 10−3 m3 (40)

On détermine ensuite la température en C avec la loi des gaz parfaits :

pCVC = nRTC ⇒ TC =
pCVC
nR

' 353.3 K (41)

• Etat D. La transformation CD étant isobare, les pressions en C et D sont identiques :

pD = pC = 1 atm ' 101300 Pa (42)

La transformation DA étant adiabatique, les pressions et volumes en D et A sont liés
par :

pDV
γ
D = pAV

γ
A ⇒ VD = VA

(
pA
pD

)1/γ

' 13.3 L = 13.3 · 10−3 m3 (43)

Finalement, on détermine la température à l’état D grâce à la loi des gaz parfaits :

pDVD = nRTD ⇒ TD =
pDVD
nR

' 202.9 K (44)

c) Le rendement d’un moteur est le rapport du travail net fournit par le système lors du
cycle (i.e. la somme de tous les travaux effectués et reçus), sur la chaleur totale reçue par
le système lors du cycle (i.e. la somme des chaleurs Q positives) :

η =

∣∣∣∣ Wnet

Qreçue

∣∣∣∣ (45)

On doit donc déterminer les chaleurs et travaux échangés lors de chaque transformation
du cycle.
• Transformation AB. Le travail effectué par le système est donné :

WAB = 4000 J (46)

La transformation AB étant isotherme, la variation d’énergie interne du gaz est nulle :

∆UAB = ncV ∆TAB︸ ︷︷ ︸
=0

= 0 (47)

On obtient alors la chaleur reçue par le gaz en utilisant le premier principe de la
thermodynamique :

∆UAB = QAB −WAB ⇒ QAB = WAB = 4000 J (48)

Le signe de QAB étant positif, cette chaleur est effectivement reçue par le gaz.
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• Transformation BC. La transformation étant adiabatique, le gaz ne reçoit ni ne cède
aucune chaleur :

QBC = 0 (49)

On peut ensuite calculer le travail effectué par le gaz grâce au premier principe :

∆UBC = QBC −WBC ⇒ WBC = −∆UBC = −ncV ∆TBC ' 1945 J (50)

On pourrait aussi intégrer le travail le long de BC grâce à la relation pV γ = constante :

pV γ = constante ⇒ p(V ) = pBV
γ
BV

−γ (51)

et on obtient

WBC =

∫ C

B

p(V )dV =

∫ C

B

pBV
γ
BV

−γdV = pBV
γ
B

[
V 1−γ

1− γ

]C
B

(52)

= pBV
γ
B

V 1−γ
C − V 1−γ

B

1− γ
' 1945 J (53)

• Transformation CD. On calcule le travail effectué par le gaz :

WCD =

∫ D

C

pdV = pC (VD − VC) ' −1003 J (54)

où l’on a utilisé le fait que la pression est constante sur CD. Remarquez que le signe
négatif de WCD indique que le travail est en fait effectué sur le gaz (pour réduire son
volume). Le premier principe donne ensuite la chaleur reçue par le gaz :

∆UCD = QCD −WCD ⇒ QCD = ncV ∆TCD +WCD ' −2504 J (55)

Le signe négatif de QCD indique que le gaz en fait cède cette chaleur. Elle ne fait donc
pas partie de la somme des chaleurs effectivement reçues par le gaz.
• Transformation DA. La transformation étant adiabatique, le gaz ne reçoit ni ne cède

aucune chaleur :
QDA = 0 (56)

Le travail effectué par le gaz est obtenu par le premier principe :

∆UDA = QDA −WDA ⇒ WDA = −∆UDA = −ncV ∆TDA ' −3446 J (57)

On peut aussi intégrer le travail le long de DA comme pour la transformation BC.
Remarquez que le signe négatif du travail indique qu’il est en fait effectué sur le gaz
pour le comprimer. Finalement, on calcule le rendement du cycle :

Wnet = WAB +WBC +WCD +WDA (58)

Qreçue = QAB (59)

⇒ η =

∣∣∣∣ Wnet

Qreçue

∣∣∣∣ =

∣∣∣∣WAB +WBC +WCD +WDA

QAB

∣∣∣∣ ' 0.37 (60)
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d) La transformation AB étant irréversible, l’échange de chaleur infinitésimal δQ n’est pas
défini est on ne peut pas écrire :

∆SAB =

∫ B

A

dS =︸︷︷︸
Faux !

∫
AB,irrév

δQ

T
=
QAB

TA
(61)

On doit trouver une transformation réversible équivalent, e.g. qui mène le gaz de l’état A
à l’état B. On choisit la transformation isotherme réversible AB. La variation d’énergie
interne du gaz est toujours nulle pour cette transformation :

∆UAB,rév = ncV ∆TAB︸ ︷︷ ︸
=0

= 0 (62)

Par contre, le travail effectué par le gaz et la chaleur reçue par le gaz dans le cas réversible
seront différents du travail et de la chaleur dans le cas irréversible. On calcule le travail
en intégrant pdV sur AB :

WAB,rév =

∫ B

A

pdV =

∫ B

A

nRT

V
dV = nRTA ln

(
VB
VA

)
' 5056 J (63)

où l’on a utilisé la loi des gaz parfaits et le fait que la température est constante le long de
AB. On utilise ensuite le premier principe pour déterminer la chaleur reçue par le gaz :

∆UAB,rév = QAB,rév +WAB,rév ⇒ QAB,rév = WAB,rév ' 5056 J (64)

On peut maintenant écrire

∆SAB =

∫
AB,rév

δQ

T
=
QAB,rév

TA
' 9.22

J

K
(65)

La variation d’enthalpie libre (énergie libre de Gibbs) s’écrit

∆GAB =

∫ B

A

dG =

∫ B

A

(
V dp− S dT︸︷︷︸

=0

)
(66)

=

∫ B

A

nRT

p
dp = nRTA ln

(
pB
pA

)
' −5056 J (67)

On remarque que la variation d’énergie libre du gaz en passant de l’état A à l’état B
correspond au travail réversible WAB,rév que le système peut fournir.

e) Si la transformation isotherme AB était réversible, on a vu au point précédent que le
travail effectué par le système ainsi que la chaleur qu’il reçoit sont différents par rapport au
cas réversible. Ces nouvelles valeurs WAB,rév et QAB,rév entrent dans le calcul du rendement
pour donner :

ηrév =

∣∣∣∣ Wnet,rév

Qreçue,rév

∣∣∣∣ =

∣∣∣∣WAB,rév +WBC +WCD +WDA

QAB,rév

∣∣∣∣ ' 0.50 > ηirrév (68)

On constate qu’un machine thermique opérant sur un cycle réversible est plus efficace
qu’une machine thermique opérant sur un cycle irréversible.
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Exercice 4

a) On calcule le nombre de glaçons qu’il faut ajouter au bain pour que le mélange atteigne
38◦C en faisant le bilan d’énergie thermique du bain que l’on considère comme un système
isolé. Toute l’énergie thermique ôtée de l’eau du bain est utilisée pour augmenter la
température du bloc d’aluminium et des glaçons (qui fondent à 0◦C) :

0 = Qeau +Qalu +Qglaçons (69)

⇒ 0 = mece(Tf − Ti) +maca(Tf − Tfroid) +mgcg(0
◦C− Tfr) +mgL+mgce(Tf − 0 ◦C)

(70)

⇒ mg =
mece(38◦C− 45◦C) +maca(38◦C− (−25◦C))

−cg · 25− ce · 38− L
' 4429.6 g (71)

c’est-à-dire 89 glaçons. Le bain de M. Fogg coûtera donc 89 CHF.

b) La variation d’entropie de l’eau du bain (sans compter l’eau de fonte des glaçons) vaut

∆Seau =

∫ f

i

δQ

T
=

∫ f

i

meauceaudT

T
= meauceau ln

(
Tf

Ti

)
' −9309 J/K (72)

avec Ti = 318.15 K et Tf = 311.15 K. L’entropie de l’eau du bain diminue donc. Quant à
la variation d’entropie de l’univers, elle est la somme des variations d’entropie de l’eau du
bain, du bloc d’aluminium et des glaçons.

∆Salu =

∫ f

i

δQ

T
=

∫ f

i

malucaludT

T
= malucalu ln

(
Tf

Ti

)
' 1018 J/K (73)

avec Ti = 248.15 K et Tf = 311.15 K.

∆Sglace =

∫ 273.15 K

Ti

δQ

T
+

∫
fonte

δQ

T
+

∫ Tf

273.15 K

δQ

T
(74)

=

∫ 273.15 K

Ti

meauceaudT

T
+

1

237.15 K

∫
fonte

δQ+

∫ Tf

273.15 K

meauceaudT

T
(75)

= meauceau ln

(
273.15 K

248.15 K

)
+

meauL

273.15 K
+meauceau ln

(
311.15 K

273.15 K

)
(76)

' 9603 J/K (77)

où nous avons utilisé le fait que la fonte de la glace se déroule à température T = 0◦C =
273.15 K constante. La variation d’entropie de l’univers vaut donc :

∆Sunivers = ∆Seau + ∆Salu + ∆Sglace ' 1312 J/K (78)

qui est belle est bien positive pour ce processus irréversible.

c) S’il on admet que le bain met t = 1 min pour atteindre sa température finale, une émissi-
vité e = 1 de l’eau du bain et une température de l’air extérieur Tair = 25◦C = 298.15 K,
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l’énergie perdue par radiation vaut

Erad = t ·Prad = t ·σeA
(
T̄ 4 − T 4

air

)
(79)

= 1 min · 60
s

min
· 5.6703 · 10−8 W

m2
· K4

· 1 · 2 m2
·

(
314.654 − 298.154

)
= (80)

= 12927 J (81)

où T̄ est la température moyenne de l’eau entre 45◦C et 38◦C (T̄ = 41.5◦C = 314.65K).
Cette énergie est d’un ordre de grandeur plus petite que l’énergie échangée entre l’eau du
bain et l’aluminium :

Qalu = malucalu∆Talu = 283500 J (82)

Exercice 5

a) Pour un conducteur de section A, l’équation de transfert de la chaleur s’écrit :

dQ

dt
= −kAdT

dx
(83)

Dans le cas du cône, la principale difficulté est donc d’évaluer la section A pour une
certaine cote x. Notons R(x) le rayon du cône à x donné. La surface de la section à x
vaut donc :

A(x) = πR(x)2 (84)

Or, on a

R(x) = 20 · 10−2 + (40− 20) · 10−2x (85)

⇒ R(x) = 20 · 10−2(1 + x) (86)

Donc

dQ

dt
= −kdT

dx
π
(
20 · 10−2(1 + x)

)2
(87)

⇒ dQ

dt
= −kdT

dx
4π · 10−2(1 + x)2 (88)

b) dQ
dt

représente le transfert de chaleur par unité de temps. Cette grandeur est indépendant
de la position x le long de l’axe du cône. A l’aide de l’équation précédente, on obtient
donc :

dQ

dt

dx

(1 + x)2
= −k4π · 10−2dT (89)

⇒
∫ x=L

x=0

dQ

dt

dx

(1 + x)2
= −k4π · 10−2

∫ x=L

x=0

dT (90)
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Et comme dQ
dt

ne dépend pas de x :

dQ

dt

∫ x=L

x=0

dx

(1 + x)2
= −k4π · 10−2

∫ x=L

x=0

dT (91)

⇒ dQ

dt

[
−1

1 + x

]x=L

x=0

= −k4π · 10−2[T ]x=L
x=0 (92)

⇒ dQ

dt

[
−1

2
− −1

1

]
= −k4π · 10−2 [T2 − T1]︸ ︷︷ ︸

=−50 K

(93)

⇒ dQ

dt
= k4π (94)

c) On a désormais la valeur de dQ
dt

que l’on peut remplacer dans l’équation obtenue au point
a) pour trouver l’expression de dT

dx
. On obtient :

k4π = −kdT

dx
4π · 10−2(1 + x)2 (95)

⇒ dT

dx
=
−102

(1 + x)2
(96)

Donc, en intégrant entre x = 0 et x = x′ quelconque compris entre 0 et L, on obtient la
température T (x′) en fonction de la coordonnée le long de l’axe longitudinale du cône :

T (x′)− T1 =
102

1 + x′
− 102 (97)

⇒ T (x′) = T1 −
102x′

1 + x′
= 80◦C− 102x′

1 + x′
(98)

On peut bien sûr remplacer la variable x′ par x.

d) Il s’agit d’une simple application numérique du résultat obtenu au point c). Avec x′ =
0.5 m, on obtient

T ' 46.7◦C (99)
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