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Exercice 1

avant impact apres impact
e[ O _f8(fo
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a) Le schéma du probleme est donné dans la figure dessus. On aurait aussi pu comprendre
la donnée de sorte que le baton est initialement orienté vers le haut. Ceci ne change rien
pour les parties b) et ¢), mais donne une solution différente pour les points d) et e).

b) Comme la collision est inélastique, I’énergie cinétique n’est pas conservée pendant le choc.
De plus, la quantité de mouvement du systeme baton-projectile n’est pas conservée non



plus étant donné que 'axe de rotation exerce une force extérieure sur le systeme via
le baton. Par contre, le moment cinétique Lo par rapport au point de rotation O est
conservé.
Avant le choc, seul le projectile a un moment cinétique non-nul. Par rapport au point O,
il est donné par

L,o=xmv (1)

Juste apres le choc, le moment cinétique du baton avec le projectile est donné par

pr,O = [bp’ow (2)

Ici, Iy, 0 est le moment d’inertie du baton avec le projectile, par rapport au point O.
On sait que Iy, 0 = Ivo + Ip0, la somme du moment d’inertie du baton et du moment
d’inertie du projectile. L’indication donne Iy, o = M L?/3. Le projectile peut étre considéré
comme un point de masse. Donc, I;, o = ma?. La conservation du moment cinétique donne
alors : v

Lp,O = pr,O = W= m (3)

On cherche xy € [0, L] tel que w est maximale. Pour x = 0, on a w = 0. Donc, w est

maximale soit a un point ou 3“’ = 0, soit pour x = L. Avec I'expression (3), la condition
i“; = 0 devient

dw M (ML + mx2> — zmuv2xzm
¥ : =0 (4)
dx (ML mx2)2

Avec m = M/2, on trouve que d—“; 0 pour z = 4/2/3L. On reste donc avec deux

candidats pour z( : soit zy = \/_ /3L, soit zg = L. Une possibilité de trouver le bon zg
est d’introduire les deux expressions dans l'expression (3) de w pour tester lequel donne
la valeur maximale de w. Mais il y a un argument plus direct : Comme w = 0 pour x =0
et pour r — oo, et comme d = 0 seulement pour x = \/_ 3L, on sait qu’on a trouvé le

maximum. Donc,
ro =+/2/3L =1.22 m. (5)

Introduisant zo = 1/2/3L dans l'expression (3), on trouve que

\/ELM
v -1
Wmax = ML2 M 2L2 = ~ 327rad s™". (6)
3 \fL

Apres I'impact, I’énergie mécanique du systeme est conservée. Juste apres I'impact du
projectile, I’énergie cinétique du systeme est donnée par

1
Ecin - §Ibp,0wr2nax (7)

Quand le baton a atteint ’angle de déviation maximal ©g, cette énergie cinétique s’est
transformée en énergie potentielle

Eyor = (M 4+ m)gAhewm (8)



Ahy,

1V Xey

Ici Ahcy est le changement de hauteur du centre de masse du baton (avec le projectile)
entre sa position verticale d’origine et ©y. On trouve

1 2
2dbp,0w

max _ ) 54m 9)

Ein=FEyx = Ahcu=
c po %Mg

avec Iy, 0 = %x% + MTLZ = 0.375 kg - m?. La distance du centre de masse par rapport au

point O est donnée par
M | L
.TO? + EM

2
La relation entre O, Ahcy et zoy est donnée par (voir la figure ci-dessus)

rom — Ahen

cos(©g) = (11)

oM

et Og est donc donné par

— Ah
©( = acos (xCM—CM) = 66.3° (12)
TcMm

Si 'on comprend la donnée de sorte que le baton est initialement orienté vers le haut, le
systeme baton plus projectile fait des tours complets autour de 'axe de rotation et O
vaut 27 (ou l'infini).

Le baton (avec projectile) est un pendule physique qui fait des oscillations (non-amorties)
autour de sa position d’équilibre 8 = 0 ou 6 est 'angle entre le baton et la verticale.
Comme O n’est pas petit, ces oscillations ne sont pas harmoniques. Dans le cas ot I'on a
supposé que le baton est initialement orienté vers le haut, le baton fait des tours entiers
avec une vitesse angulaire variable.



Exercice 2

Dans cet exercice, on définit trois référentiels : le référentiel R du désert (dans lequel les lampes
sont au repos), le référentiel R’ du cycliste qui circule & une vitesse v dans le méme sens que
la propagation des flashs lumineux, et le référentiel R” le référentiel du cycliste qui roule & une
vitesse —v par rapport a ‘R.

a) On doit déterminer le temps 7’ et la distance Az’ qui séparent les flashs dans le référentiel
R’ du cycliste. On s’intéresse donc a deux évenements : évenement 1 = la lampe 1 s’allume ;
évenement 2 = la lampe voisine s’allume. Dans le référentiel R du désert, on choisit les
origines de I'axe x et du temps t telles que ces évenements ont les coordonnées

(ZEhtl) = (Om,()s) (13)
(z2,t2) = (d, 7) (14)

On a donc :
Ar=2y—x2;=d=10m et At=ty—t; =7 =>5ns (15)

On utilise ensuite les transformations de Lorentz qui lient les coordonnées d’espace et de
temps entre un référentiel R et un référentiel R’ en translation par rapport a R avec une
vitesse v dans la direction positive des x (ce qui correspond tout a fait a la situation que
I'on traite ici) :

z = (2 + ot (16)
—y (17)
z2=2 (18)
, v
ou le coefficient relativiste s’écrit :
1

V= =125 (20)
02
Vyi-=

On inverse cette relation pour obtenir les coordonnées dans R’ en fonction des coordonnées

dans R :
' = (x —vt) (21)
t =~ (t — Z—f) (22)

Pour les événements qui nous intéressent (flash 1 suivi de flash 2), on obtient alors

d = Az’ =~ (Az —vAt) =11.375m (23)
=AU =~ (At - UAf) — —18.75ns (24)
C

Donc, dans le référentiel du cycliste, les évenements « flashs successifs » sont séparés par
une distance plus grande que dans le référentiel du désert. Ces évenements sont séparés
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par un intervalle de temps 7" = At’ < 0, ce qui indique que les éveénements ont lieu dans
un ordre inverse dans le référentiel R’ du cycliste (ce qui est tout a fait permis étant
donné qu’aucun lien de cause a effet ne lie les flashs successifs).
Les lampes étant au repos dans le référentiel du désert, la distance d qui les sépare est
une longueur propre. La longueur propre d' qui sépare les lampes dans le référentiel R’
du cycliste (a ne pas confondre avec la distance entre les flashs qui sont des évenements)
vaut donc :
!

d 5 8 m (25)
On peut aussi trouver ce résultat a partir des transformations de Lorentz en considérant
que pour mesurer la distance entre les lampes dans le référentiel du cycliste, le cycliste doit
trouver une regle (ou tout autre objet) de longueur d’ telle que ses extrémités s’alignent
avec deux lampes voisines simultanément. En d’autres termes, les évenements « 'extré-
mité a de la regle s’aligne avec une lampe » et « 'extrémité b de la regle s’aligne avec une
lampe voisine » sont séparé par Az = d’ et At’ = 0s dans le référentiel R'. On sait que
ces évenements sont séparés par une distance Az = d dans le référentiel R du désert. (Par
contre, ils ne sont pas simultanés dans R.) Avec la premiere transformation de Lorentz,
on obtient A

AT _d g (26)
8 gl

Dans ce cas, la vitesse relative du référentiel R” par rapport a R vaut —v, ce qui ne
change pas la valeur de 7 : y(—v) = v(v). La distance d” entre les lampes dans le R” est
donc égale a d’ dans R’ :

Ar =~ (Az' +0AY) = d=Axr=

d”:%:d’:é%m (27)

Que le cycliste voyage dans une direction ou une autre, il observe un contraction des
longueurs. Quant a la distance et au temps qui séparent les flashs, leur expression est
similaire & celle du point a), mais avec une vitesse relative opposée :

d = Az’ =~ (Az + vAt) = 13.625m (28)
vAx

c2

T =At =~ (At + ) = 31.25ns (29)

Pour que les flashs soient simultanés dans le référentiel R’, il faut que 7/ = At' =0 :

A d d
0:At’=7<At—”cf>=7<r—”—) = TZZ—Q (30)

c2

Pour que le cycliste voie les flashs, il faut que la lumiere soit émise puis qu’elle se propage
jusqu’a ses yeux. En considérant que le cycliste est aligné avec une lampe quand celle-ci
émet (évenement 1 : (X7,77) = (0m,0ns)), la lampe suivante a une distance d' de la

premiére « émettra » son flash (événement 2) au temps Ty = 7/ = —18.75ns « apres »
la premiere lampe (i.e. avant la premiere lampe). Pendant cet intervalle de temps, les
lampes se sont déplacées par rapport au cycliste d'une distance D' = —v7’ = 3.375m.

L’évenement 2 a donc lieu a la position X, = d' + D' = 14.75m. Finalement, la lumiere



de la deuxieme lampe atteint I'oeil du cycliste (évenement 3) au point X4 = 0m, toujours
a lorigine du référentiel. La lumiere émise par la deuxieme lampe doit donc parcourir
une distance AXj 5 = X3 — X3 a une vitesse —c pour atteindre I'oeil du cycliste apres un

temps AT: ., = AX3s ~ 49 2 ns. Finalement, le cycliste voit les flashs avec un intervalle de
p 3,2 —_c ) y
temps :

AT| 3 = AT] , + AT, 3 = —18.75ns + 49.2ns ~ 30.4 ns (31)

Exercice 3

a) Il s’agit d’'un cycle moteur. En effet, le cycle est parcouru dans le sens horaire, de sorte
que le travail fournit par le gaz lors des transformations AB et BC' (représenté par la
surface sous les courbes AB et BC') est plus élevé que le travail requ par le gaz lors des
transformations C'D et DA.

b) On calcule la pression, la température et le volume du gaz aux états A, B, C et D :
e Etat A. La pression et le volume sont donnés :

pa = 12atm = 1215600Pa et V4 =3L=3-10"m? (32)
La température en A est calculée grace a la loi des gaz parfaits :

paVa

paVa=nRTy, = Ty= = 548.3K (33)
oun = 0.8mol et R est la constante des gaz parfaits.
e Etat B. Le volume est donné :
Vp=12L=12-10""m? (34)
La transformation AB étant isotherme, la température en B est égale a la température
en A :
T =Tx =548.3K (35)
On utilise ensuite la loi des gaz parfaits pour déterminer la pression a 1’'état B :
RT,
psVs =nRTy = pp=——B = 303900 Pa = 3atm (36)
B
e Etat C'. La pression est donnée :
pc = latm ~ 101300 Pa (37)

La transformation BC' étant adiabatique, les pressions et volumes en B et C' sont liés
par :
psVg = pcVe (38)

ol v est la constante adiabatique. Le gaz étant mono-atomique, ses molécules n’ont
que v = 3 degrés de liberté, i.e. les degrés de liberté liés a la translation. La constante

adiabatique vaut donc :
v+2

v

7= : (39)



On obtient alors le volume a ’état C' :

PB

1/
) ~232L =232-10"m* (40)
pbc

Vc:VB(

On détermine ensuite la température en C avec la loi des gaz parfaits :

pcVe
n

pCVC =nRl, = 1= ~ 353.3K (41)

e Etat D. La transformation C'D étant isobare, les pressions en C' et D sont identiques :
pp = pc = latm ~ 101300 Pa (42)

La transformation DA étant adiabatique, les pressions et volumes en D et A sont liés
par :

pa
Pp
Finalement, on détermine la température a 1’état D grace a la loi des gaz parfaits :

1/~
poVp=paVi = Vp=Viu ( ) ~133L=133-10""m’ (43)

ppVp
n

pDVD = nRTD = TD =

~ 202.9K (44)

¢) Le rendement d’un moteur est le rapport du travail net fournit par le systeme lors du
cycle (i.e. la somme de tous les travaux effectués et regus), sur la chaleur totale regue par
le systeme lors du cycle (i.e. la somme des chaleurs @) positives) :

n= Wnet
Qregue
On doit donc déterminer les chaleurs et travaux échangés lors de chaque transformation

du cycle.
e Transformation AB. Le travail effectué par le systeme est donné :

(45)

Wap = 4000 (46)
La transformation AB étant isotherme, la variation d’énergie interne du gaz est nulle :

AUAB = ncy ATAB =0 (47)
——

=0

On obtient alors la chaleur regue par le gaz en utilisant le premier principe de la
thermodynamique :

AUap = Qap —Wap = Qap=Wap=4000J] (48)

Le signe de Q) 45 étant positif, cette chaleur est effectivement recue par le gaz.



Transformation BC'. La transformation étant adiabatique, le gaz ne recoit ni ne cede
aucune chaleur :

@pc =0 (49)

On peut ensuite calculer le travail effectué par le gaz grace au premier principe :
AUpc = Qpc —Wpe = Wpe=—-AUpc = —ncyATge ~1945] (50)

On pourrait aussi intégrer le travail le long de BC grace a la relation pV/? = constante :

pV7 = constante = p(V)=ppgVaV " (51)
et on obtient
c o} yi-1¢
B B 1—7v]p
Ve =V
= ppVg— vB ~ 1945 ] (53)

Transformation C'D. On calcule le travail effectué par le gaz :

D

WCD = / pdV = pPc (VD — VC) ~ —1003J (54)
c

ou l'on a utilisé le fait que la pression est constante sur C'D. Remarquez que le signe

négatif de Wep indique que le travail est en fait effectué sur le gaz (pour réduire son

volume). Le premier principe donne ensuite la chaleur regue par le gaz :

AUcp = QCD —Wep = QCD =nceyATcp + Wep >~ —2504 ] (55)

Le signe négatif de Q¢ p indique que le gaz en fait cede cette chaleur. Elle ne fait donc
pas partie de la somme des chaleurs effectivement recues par le gaz.

Transformation DA. La transformation étant adiabatique, le gaz ne recoit ni ne cede
aucune chaleur :

Qpa=0 (56)

Le travail effectué par le gaz est obtenu par le premier principe :
AUDA:QDA—WDA = WDA:—AUDA:—TZCVATDAZ—3446J (57)

On peut aussi intégrer le travail le long de DA comme pour la transformation BC.
Remarquez que le signe négatif du travail indique qu’il est en fait effectué sur le gaz
pour le comprimer. Finalement, on calcule le rendement du cycle :

Whet = Wap + Wpge + Wep + Wpa (58)
Qregue = QAB (59)
Wae W %% W, W
= = ¢ | _ |Was+Wpe+ Wep + Wpa ~ 0.37 (60)
Qre(;ue QAB




d)

La transformation AB étant irréversible, I’échange de chaleur infinitésimal 6¢) n’est pas
défini est on ne peut pas écrire :

0Q _ Qas

AB,irrév T Ty

= (61)

Faux!

B
ASAB:/ ds =
A

On doit trouver une transformation réversible équivalent, e.g. qui mene le gaz de ’état A
a I’état B. On choisit la transformation isotherme réversible AB. La variation d’énergie
interne du gaz est toujours nulle pour cette transformation :

AUABJéV = Nncy ATAB =0 (62)
=0

Par contre, le travail effectué par le gaz et la chaleur recue par le gaz dans le cas réversible
seront différents du travail et de la chaleur dans le cas irréversible. On calcule le travail
en intégrant pdV sur AB :

B B nRT V
Wip e = / pdV = / DAV = nRTuIn [ <2 ) ~ 5056 (63)
7 A AV Va

ou l'on a utilisé la loi des gaz parfaits et le fait que la température est constante le long de
AB. On utilise ensuite le premier principe pour déterminer la chaleur recue par le gaz :

AUppréy = QaBpev ¥ Waprey =  Qarev = Waprew ~ 5056 J (64)
On peut maintenant écrire
5@ QAB rév J
ASap = / — = — ~ 022 — 65)
ABrév 1 Ty K (

La variation d’enthalpie libre (énergie libre de Gibbs) s’écrit

B B
AG s = / dG = / Vdp — S dT 66
ap= | : ( v) (66)

=0

B nRT
_ / "R = nRT,In (12) ~ 5056 (67)
A D Pa

On remarque que la variation d’énergie libre du gaz en passant de 1'état A a 1’état B
correspond au travail réversible Wap ¢y que le systeme peut fournir.

Si la transformation isotherme AB était réversible, on a vu au point précédent que le
travail effectué par le systeme ainsi que la chaleur qu’il regoit sont différents par rapport au
cas réversible. Ces nouvelles valeurs Wap ¢y €t Q ap ¢y entrent dans le calcul du rendement
pour donner :

Wnet Jrév

Qregue,rév

_ Warew + Wee +Wep +Whpa
QAB,réV

Thév = ~ 0.50 > Nirrév (68)

On constate qu'un machine thermique opérant sur un cycle réversible est plus efficace
qu'une machine thermique opérant sur un cycle irréversible.



Exercice 4

a)

On calcule le nombre de glacons qu’il faut ajouter au bain pour que le mélange atteigne
38°C en faisant le bilan d’énergie thermique du bain que ’on considére comme un systeme
isolé. Toute 1’énergie thermique otée de l'eau du bain est utilisée pour augmenter la
température du bloc d’aluminium et des glagons (qui fondent a 0°C) :

0= Qeau + Qalu + lea(;ons 69)
= 0=meCe(Tt — T3) + maca(Tt — Thoia) + Mgcy(0°C — Th) + mgL + mgce (1t — 0°C)

MeCe(38°C — 45°C) + m,ca(38°C — (—25°C))
—Cg 25 —Ce 38— L

= my= ~ 44296 ¢

c’est-a-dire 89 glacons. Le bain de M. Fogg cotitera donc 89 CHF.

La variation d’entropie de I’eau du bain (sans compter 1’eau de fonte des glagons) vaut
f £
5 eau eaudT T
ASop = /1 _;;2 — /1 % = MeauCean IN (Tf> ~ —9309J/K (72)

avec T; = 318.15 K et Ty = 311.15 K. L’entropie de ’eau du bain diminue donc. Quant a
la variation d’entropie de 'univers, elle est la somme des variations d’entropie de I'eau du
bain, du bloc d’aluminium et des glacons.

f f
_ 5@ o malucaludT T
ASalu = /1 ? = /1 T = MaluCalu ln Tl 1018 J/K (73)
avec T} = 248.15 K et T; = 311.15 K.
273.15K
)
ASgla,ce :/ Q / <74)
fonte 273.15 K T
273.15K T,
eau eaudT f eau eaudT
— / S / 5Q + / Heanfean® —(75)
T; 23715 K fonte 273.15 K T
B | 273.15 K Meaul n | 311.15 K (76)
— MeanCean M 9095 K ) T 27315 K e M 97315 K
~ 9603 J /K (77)

ou nous avons utilisé le fait que la fonte de la glace se déroule a température 7' = 0°C =
273.15 K constante. La variation d’entropie de 'univers vaut donc :

AS’univers = ASeau + AS’alu + ASglace ~ 1312 J/K (78)

qui est belle est bien positive pour ce processus irréversible.

S’il on admet que le bain met ¢ = 1 min pour atteindre sa température finale, une émissi-
vité e = 1 de I’eau du bain et une température de I'air extérieur T,;, = 25°C = 298.15 K,
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I’énergie perdue par radiation vaut

Erad =1- Prad =t-0eA (T4 — T;lir) (79)
. . S -8 2 4 4\ _
= lmin- 60 ——-5.6703- 10" ——=-1-2m". (314.65* —298.15%) = (80)
= 12027 (81)

ot T est la température moyenne de I'eau entre 45°C et 38°C (T = 41.5°C = 314.65K).
Cette énergie est d'un ordre de grandeur plus petite que 1’énergie échangée entre l’'eau du
bain et ’aluminium :

Qalu = malucaluATalu = 283500 J (82)

Exercice 5

a) Pour un conducteur de section A, I’équation de transfert de la chaleur s’écrit :

1Q_ 07

dt ~ "Tdz (83)

Dans le cas du cone, la principale difficulté est donc d’évaluer la section A pour une
certaine cote x. Notons R(x) le rayon du cone a = donné. La surface de la section & x

vaut donc :
A(x) = nR(x)? (84)
Or, on a
R(r) =20-1072 + (40 — 20) - 10~ %z (85)
= R(x) =20-10"%(1 + ) (86)
Donc
dQ  dT Y 5
= = kT (20-107%(1 + 2)) (87)
dQ 4T . )
5 = kgm0 (1+2) (88)

b) C}l—? représente le transfert de chaleur par unité de temps. Cette grandeur est indépendant

de la position x le long de I'axe du cone. A 'aide de I’équation précédente, on obtient

donc :
d@ dz 9
— = —k4xr - 1074dT &9
dt (1+a)? g (89)
dQ dx L
— = —kdnw-1 dT
/:c:o dt (1 + f)g T 10 /x:O (90)
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Et comme % ne dépend pas de z :

dQ =t dz L /“
a< = k4710 dr 91
dt x=0 (1—|—£L')2 " x=0 ( )
aQ [ —1 17=* e
- [1 +x} = —k4r-1072[T)"=k (92)
x=0
dQ [-1 -1 L
o 2 = —k4n- 1072 T — T 93
I [2 1] 71072 [Ty — T3] (93)
=—50K
= %:lﬂlw (94)

¢) On a désormais la valeur de % que 'on peut remplacer dans I’équation obtenue au point

a) pour trouver I'expression de %. On obtient :

dr
Fdm = —k——dr- 1072(1 4 z)? (95)
dr  —10?

- 96
dz (14 x)? (96)

Donc, en intégrant entre x = 0 et = 2’ quelconque compris entre 0 et L, on obtient la
température T'(z’) en fonction de la coordonnée le long de I’axe longitudinale du cone :

10?

T(z) — T, = —10? 97

(2") =T T (97)
1022 1022

T(Z =T, — = 80°C — 98

= T)=Th— 5 =80C— (98)

On peut bien sir remplacer la variable 2’ par x.

d) 1l s’agit d’une simple application numérique du résultat obtenu au point c). Avec 2’ =
0.5m, on obtient
T ~ 46.7°C (99)
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