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Exercice 1

a) Si dans une oscillation complète la masse m retourne à sa place originale, il faut une demi-oscillation
pour atteindre la position la plus proche de la paroi. Donc :

T0
2

= π

√
m

k
= π

√
10kg

400Nm
= 0.49s

b) La plaque part avec une vitesse nulle de la position initiale xi, en étant accélérée par le ressort. Ensuite
elle croise la position d’équilibre x0, origine de notre référentiel, avec une accélération nulle et une vitesse
maximale pour être ensuite décélérée et atteindre encore une vitesse nulle dans la position la plus proche
à la paroi. Nous pouvons évaluer l’énergie totale dans ces deux positions (vitesse nulle = [1] ; vitesse
maximale et accélération nulle, soit position d’équilibre = [2]) :

E[1] =
1

2
k(xi − x0)2 = E[2] =

1

2
mv2max

d’où :

vmax =

√
k

m
(xi − x0) =

√
400 N.m−1

10 kg
0.2 m = 1.26 m.s−1

c) Nous allons dériver l’équation du mouvement en partant de l’énergie totale du système, donnée par la
somme de l’énergie cinétique, de l’énergie de rotation de la roue et de l’énergie potentielle du ressort dans
une position x quelconque :

E =
1

2
mv2x +

1

2
Iω2 +

1

2
k(x− x0)2 =

1

2
mv2x +

1

2

(
1

2
m′R2

)
ω2 +

1

2
k(x− x0)2

avec I = 1
2m
′R2. En exploitant la conservation de l’énergie du système (dEdt = 0) nous obtenons :

dE

dt
=

d

dt

(
1

2
mv2x +

1

4
m′R2ω2 +

1

2
k(x− x0)2

)
= 0

1

2

(
m
d

dt
v2x +

1

2
m′R2 d

dt
ω2 + k

d

dt
(x− x0)2

)
= 0

m2vx
dvx
dt

+m′R2ω
dω

dt
+ k2x

d(x− x0)
dt

= 0

Pour la condition de roulement sans glissement : ωR = vx et dω
dtR = αR = ax = dvx

dt . Donc :

vx

(
m
dvx
dt

+
1

2
m′
dvx
dt

+ kx

)
= 0
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donc nous dérivons l’équation d’un oscillateur simple avec masse m + 1
2m
′ (oscillateur horizontal avec

ressort) : (
m+

1

2
m′
)
dvx
dt

+ kx = 0 =⇒ d2x

dt2
= − k

m+ 1
2m
′x

d) En ayant démontré que le mouvement de la plaque dans la deuxième situation est assimilable à un
oscillateur simple de masse m+ 1

2m
′ nous aurons une période d’oscillation :

T ′ = 2π

√
m+ 1

2m
′

k

La plaque atteint la position d’équilibre pour la première fois après T
4 (pendant une oscillation entière elle

croise la position d’équilibre deux fois). Nous pouvons donc déterminer le retard comme la difference :

∆t =
T ′

4
− T0

4
=
π

2

√m+ 1
2m
′

k
−
√
m

k

 = 0.08s

e) Pour maintenir une adhésion entre la plaque de masse m et la roue de masse m′ instant par instant
l’accélération due à la force de frottement (Ffr = µsN) doit être égale à la force de rappel du ressort
(Fmaxr = −k(xi−x0)). Nous pouvons évaluer la valeur minimale pour le coefficient de frottement statique
en considérant la force de rappel du ressort dans sa valeur maximale (aux extrêmes de l’élongation,
±(xi − x0)) :

µsm
′g ≥ k(xi − x0) =⇒ µs ≥

(xi − x0)k
gm′

= 0.54

Exercice 2

v =0.8cb

d = 15m d

d = 30m N

d = 40m b

v =0.5cN

Figure 1 – Schéma de la scène de football.

Il y a trois systèmes référentiels : celui de Buffon ( qui est aussi le référentiel du défenseur et de l’arbitre),
le référentiel de Neymar et celui du ballon. Il faut noter que pour le processus ”passe de Silva vers Neymar”,
le référentiel du ballon est le référentiel propre, tandis que le référentiel de Neymar est le référentiel propre
pour le processus ”courir et recevoir le ballon”. Par conséquent, la passe de Silva et le début du sprint de
Neymar, qui se passent au même instant dans le référentiel de Buffon, sont décalés dans le temps dans le
référentiel de Neymar, car les deux évènements ne se passent pas au même endroit.
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a) Dans le référentiel de Buffon le ballon et Neymar sont en mouvement, donc on peut trouver le temps
et l’endroit de l’arrivée du ballon vers Neymar en égalisant les trajectoires des deux :

xball(t) = xNey(t)

⇐⇒ dball − vball∆t = dNey − vNey∆t

=⇒ ∆tBuf =
dball − dNey
vball − vNey

=
10 m

0.3 c
= 1.11 · 10−7 sec = 111 ns

La distance du but peut alors être trouvée avec le mouvement du ballon ou de Neymar :

xarrive = dball − vball∆t = 40m− 0.8c · 1.11 · 10−7sec = 13.3m.

Pour trouver la distance dans le référentiel de Neymar, on peut calculer la distance que Buffon a
parcouru dans ce référentiel pendant le temps de voyage du ballon. Parce que Silva et Neymar ne se
trouvent pas au même endroit lors de la passe, pour Neymar, la passe est jouée au moment t0 qui se
trouve avec la transformation de Lorentz :

t0 = γNey−Buf

(
0−

vNey(dball − dNey)
c2

)
= −1.92 · 10−08 sec = −19.2 ns

Le temps de voyage du ballon vue de Neymar peut être calculé avec une transformation de Lorentz en
partant du temps trouvé et de ce décalage :

∆tN = γNey−Buf ·
(

∆tB −
vNey(dball − xarrive)

c2

)
− t0

= 1.155 ·
(

1.11 · 10−7 sec− 0.5 · (40 m− 13.3 m)

c

)
+ 1.92 · 10−08 sec

= 9.63 · 10−8 sec = 96.3 ns

Dans le référentiel de Neymar, Buffon bouge avec une vitesse de vBuffon = −vNeymar. La nouvelle
distance entre eux (vue de Neymar) est donc :

xBuf (∆tN ) = (dBuf )N − (vBuf )N∆tN =
(dNey)B
γNey−Buf

− (vNey)B∆tN

=
30 m

1.155
− 0.5c · 9.63 · 10−8 sec = 11.5 m

Remarque : Alternativement et plus facilement on peut directement transformer la distance calculée
dans le référentiel de Buffon vers le référentiel de Neymar :

xBuf (∆tN ) =
(xarrive)B
γNey−Buf

= 11.5 m.

b) Pour répondre, il faut comparer la distance trouvée avec la distance du dernier défenseur au but. Dans
le référentiel le défenseur est 15 m devant le but, alors avec une distance de xarrive = 13.3 m de Neymar
au moment où il reçoit le ballon, on voit que Neymar est au delà du dernier défenseur quand la passe
arrive.

c) Nous avons déja traité cette question dans la première question de l’éxercice, avec les réponses pour
Buffon :

tBuf = 20 min, 111ns

et pour Neymar :
tNey = 20 min, 96.3 ns.
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d) Le travail utilisé par Silva correspond à l’énergie cinétique du ballon, donc le travail relativiste est :

Ekin,rel = (γball−Buf − 1)×mball × c2 =

 1√
1− (0.8c)2

c2

− 1

 0.5 kg c2 = 3.00 · 1016 J,

et l’énergie cinétique classique est :

Ekin,class =
1

2
×mball × v2ball =

1

2
0.5 kg (0.8c)2 = 1.43 · 1016 J.

Exercice 3

La bulle 1 qui monte sans encombre n’échange pas de chaleur avec l’eau, elle subit donc un processus
adiabatique, tandis que la bulle 2 subit une expansion isotherme.
On suppose qu’une bulle d’air est un gaz parfait. On suppose aussi que l’air est un gaz di-atomique.

a) Soit Pfond la pression au fond du lac et Psurface la pression à la surface avec Psurface < Pfond.

Au fond du lac, le volume des deux bulles est égal : Vfond mais plus à la surface. On doit donc comparer
Vadiabatique et Visotherme.

Pour un gaz parfait diatomique sous expansion adiabatique, nous avons :

P1V
γ
1 = P2V

γ
2

où γ = 7/5=1.4 . En appliquant dans notre cas, on obtient :

V γ
adiabatique =

Pfond

Psurface
V γ
fond ⇒ Vadiabatique = γ

√
Pfond

Psurface
Vfond

Pour l’expansion isotherme on utilise la formule des gaz parfaits : P1V1 = P2V2 où, pour notre cas, on
obtient :

Visotherme =
VfondPfond

Psurface
.

Calculons le rapport des volumes :

Vadiabatique
Visotherme

=
Vfond
Vfond

(
Pfond

Psurface

)1/γ Pfond

Psurface
=

(
Pfond

Psurface

) 1
γ
−1

< 1⇒ Vadiabatique < Visotherme

car γ > 1. Le volume de la bulle qui a subit une expansion adiabatique est plus petit que le volume
de la bulle qui a subit une transformation isotherme.

b) Pour calculer le volume de chaque bulle à la surface, il nous faut connâıtre, d’après les formules utilisées,
le volume initial (Vfond) et le rapport entre les pressions au fond et à la surface, Pfond/Psurface.

Exercice 4

a) Les trois étapes sont (voir figure) :
1. transformation isochore (V constant)
2. expansion isobare (P constant)
3. compresion isotherme (processus lent, T constant)

Etant donné le sens anti-horaire du cycle, il s’agit d’un réfrigérateur.
b) A l’état initial : P1V1 = nRT1. Donc T1 = P1V1

nR = 20 atm×4 L
3mol×0.0821 atm.L.mol−1.K−1 = 324.8 K
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Figure 2 – Cycle thermodynamique

c) Comme il s’agit d’un réfrigérateur, on calcule le coefficient de performance (CP)

CP =
|QL|
|W |

où QL représente la chaleur extraite de la source froide lors de l’expansion isobare et W est la somme des
travaux (Wtot = Wisobare +Wisochore +Wisotherme).
De plus comme Wisochore = 0, on a
1.Wtot = Wisobare +Wisotherme = nRT1 ln V1

xV1
+ P2(xV1 − V1)

2. QL = Qisobare = ∆Uisobare +Wisobare = n5
2R(T1 − T2) + P2(xV1 − V1).

Et donc, avec V = V1 = V2, P2 = P3 = nRT3
V3

= nRT1
xV1

= P1
x et T2 = P2V2

nR = P1V1
nRx = T1

x , on obtient :

CP =

∣∣n5
2R(T1 − T2) + P2(xV1 − V1)

∣∣∣∣∣nRT1 ln V1
xV1

+ P2(xV1 − V1)
∣∣∣ =

∣∣n5
2R(T1 − T2) + nRT2(x− 1)

∣∣
|nRT2(x− 1)− ln(x)nRT1|

=

∣∣n5
2RT1(1−

1
x) + nRT1(1− 1

x)
∣∣∣∣nRT1(1− 1

x)− ln(x)nRT1
∣∣

CP =
7

2

x− 1

|x− 1− x ln(x)|
Enfin on peut voir que :
1. CP diminue quand x augmente
2. CP ne dépend pas de T

d)

Wtot = Wisobare+Wisotherme = nRT1 ln
V1
xV1

+P2(xV1−V1) = 3 mol×8.314 J.mol−1.K−1×ln
4

4x
+P2(4x−4)

Il faut maintenant calculer P2 :
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De la transformation isochore, on tire nRT1
P1

= nRT2
P2

et donc T1
P1

= T2
P2

ou P2 = P1T2
T1

. Puis de l’expansion

isobare, on trouve : V1
nRT2

= xV1
nRT1

et donc T2 = T1
x donc P2 = P1T1

xT1
Soit au final, l’expression suivante pour le travail total :

Wtot = Wisobare +Wisotherme = nRT1 ln
V1
xV1

+
P1

x
(xV1 − V1)

A.N. pour x=4 Wtot = 3mol × 8.314 J
molK × ln 4

16 + 5 atm(16− 4) = −5230 J
e) Entropie pour la compression isotherme : dUisotherme = 0, dQisotherme = pdV , où p = nRT

V

et donc

∆Sisotherme =

∫
nRTdV

V T
=

∫
nRdV

V
= nRln

V1
xV1

= −34.5J (1)

Energie libre de Gibbs pour la compression isotherme :

∆G =

∫
dG =

∫
dU + pdV + V dp− TdS − SdT =

∫
V dp =

∫
nRT

p
dp = nRT1 ln

(
P1

P3

)
= nRT1 ln(x)

(2)

Exercice 5

a) La chaleur nécessaire pour que la glace fonde complètement vaut :

Qg−e = mgcg(0
◦C − Tg) +mgLg (3)

où mg = ρgVg = ρgπr
2
inL.

Le premier terme représente la chaleur nécessaire pour élever la température de la glace de sa valeur
initiale (Tg = −6◦C) à son point de fusion (0◦C à la pression atmosphérique). La deuxième terme
représente la chaleur nécessaire pour faire fondre toute la glace.

Le flux thermique nette du rayonnement absorbé par la bouteille est :

Φ =
Q

4t
= εσBS(T 4

a − T
4
g) (4)

où S = 2πrinL la surface d’échange de la chaleur, Ta = 303◦K la température ambiante , T g la
température moyenne à l’intérieur de la bouteille. On peut approximer T g = 270◦K (−3◦C) pendant
la phase de l’augmentation de la température au point de fusion, et T g = 273◦K (0◦C) pendant la
phase de la fusion de la glace.

Le temps nécessaire pour que la glace fonde complètement :

tg−e =
mgcg(0

◦C − Tg)
εσBS(T 4

a − 2704)
+

mgLg
εσBS(T 4

a − 2734)
=
ρgrin
2εσB

[
cg(0

◦C − Tg)
T 4
a − 2704

+
Lg

T 4
a − 2734

]
(5)

Application numérique :
tg−e = 1.1870× 105s ' 1 jour 9 heures (6)

b) S’il y a l’air il faut rajouter le flux thermique de la conduction. Le flux thermique total est donc :

Φ =
Q

4t
= εσBS(T 4

a − T
4
g) + kairS

Ta − T g
d

(7)

où d = (7cm−5cm)/2 = 1cm la distance entre les parois. Le premier terme est le flux du rayonnement,
le deuxième terme est le flux de la conduction. Comme qu’on a fait dans a) on peut approximer
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T g = 270◦K (−3◦C) pendant la phase de l’augmentation de la température au point de fusion, et
T g = 273◦K (0◦C) pendant la phase de la fusion de la glace.

tg−e =
ρgrin

2

[
cg(0

◦C − Tg)
εσB(T 4

a − 2704) + kair
d (Ta − 270)

+
Lg

εσB(T 4
a − 2734) + kair

d (Ta − 273)

]
(8)

Application numérique :
tg−e = 3.6514× 104s ' 10 heures 9 minutes (9)

c) La vitesse du N2 vaut :

(vrms)N2 =

√
3kBTa
mN2

=

√
3kBTa

28u
' 520m/s (10)

La vitesse du O2 vaut :

(vrms)O2 =

√
3kBTa
mO2

=

√
3kBTa

32u
' 486m/s (11)

La vitesse des molécules d’air est :

vair = 0.8(vrms)N2 + 0.2(vrms)O2 ' 513m/s (12)

On peut aussi utiliser la vitesse moyenne v =
√

8kBTa
πm . On obtient vN2 ' 479m/s, vO2 ' 448m/s et

vair ' 473m/s.

La force nette sur la bouteille vaut :

Fnette =
1

2
Sextp1% (13)

où on prendre la moité de la surface latérale de la bouteille (Sext = 2πrextL) parce ce qu’on considère
une direction particulière, et p1% est la pression due à 1% de la vitesse des molécules d’air. p1% ∼
température ∼ vitesse2. Donc on a :

p1% = (0.01)2patm (14)

Finalement, on obtient :
Fnette = πrextL(0.01)2patm ' 0.45N (15)
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