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Exercice 1

a) Si dans une oscillation compléte la masse m retourne & sa place originale, il faut une demi-oscillation
pour atteindre la position la plus proche de la paroi. Donc :

T Im [ 10kg
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b) La plaque part avec une vitesse nulle de la position initiale z;, en étant accélérée par le ressort. Ensuite
elle croise la position d’équilibre zq, origine de notre référentiel, avec une accélération nulle et une vitesse
maximale pour étre ensuite décélérée et atteindre encore une vitesse nulle dans la position la plus proche
a la paroi. Nous pouvons évaluer I’énergie totale dans ces deux positions (vitesse nulle = [1]; vitesse
maximale et accélération nulle, soit position d’équilibre = [2]) :

1
E[l] = 5/43(.% — :Eo)2 = E[Q] = —Mv

k [400 N.m—!
Umax = E('rz - «TO) = 00101{1;102 m = 1.26 IIl.Si1

¢) Nous allons dériver ’équation du mouvement en partant de I’énergie totale du systeme, donnée par la
somme de I’énergie cinétique, de I’énergie de rotation de la roue et de I’énergie potentielle du ressort dans
une position x quelconque :

d’ou :
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E= §mvg + §Iw2 + §k(m — ) = imvg +3 <2m'R2> w? + §k(x — x0)?

dE

o = 0) nous obtenons :

avec I = 2m 'R?. En exploitant la conservation de 1'énergie du systéme (%
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Pour la condition de roulement sans glissement : wR = v, et %R =aR=aqa, = dst
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donc nous dérivons 1’équation d’un oscillateur simple avec masse m + %m’ (oscillateur horizontal avec
ressort) :

1 ,\ dv, d’x k
(m+3) G TR T
d) En ayant démontré que le mouvement de la plaque dans la deuxiéme situation est assimilable & un
oscillateur simple de masse m + %m’ nous aurons une période d’oscillation :

La plaque atteint la position d’équilibre pour la premiere fois apres % (pendant une oscillation entiere elle
croise la position d’équilibre deux fois). Nous pouvons donc déterminer le retard comme la difference :

T Ty = m+ im/ m
Ar=— -0 T TR T 008
442 k k 5

e) Pour maintenir une adhésion entre la plaque de masse m et la roue de masse m’ instant par instant
l'accélération due a la force de frottement (Ff. = psN) doit étre égale a la force de rappel du ressort
(Em* = —k(x; — x0)). Nous pouvons évaluer la valeur minimale pour le coefficient de frottement statique

en considérant la force de rappel du ressort dans sa valeur maximale (aux extrémes de ’élongation,
i(l‘i — xo)) :

psm'g > k(x; — x0) = s > M =0.54
qgm
Exercice 2
—
O v,=0.5c
v,=0.8¢c /

5 d,= 40m _

) d=30m 1«

d,= 15m

FIGURE 1 — Schéma de la scene de football.

Il y a trois systeémes référentiels : celui de Buffon ( qui est aussi le référentiel du défenseur et de I’arbitre),
le référentiel de Neymar et celui du ballon. Il faut noter que pour le processus "passe de Silva vers Neymar”,
le référentiel du ballon est le référentiel propre, tandis que le référentiel de Neymar est le référentiel propre
pour le processus "courir et recevoir le ballon”. Par conséquent, la passe de Silva et le début du sprint de
Neymar, qui se passent au méme instant dans le référentiel de Buffon, sont décalés dans le temps dans le
référentiel de Neymar, car les deux évenements ne se passent pas au méme endroit.

2 Tournez la page!



a)

Dans le référentiel de Buffon le ballon et Neymar sont en mouvement, donc on peut trouver le temps
et I’endroit de I'arrivée du ballon vers Neymar en égalisant les trajectoires des deux :

Thaui(t) = TNey(t)
> dpait — VoaltAt = dNey — UNeyAt
dpan — d 10
—  Atpy = ellmWev B 111.10 7sec = 111ns

Uball — UNey 0.3c

La distance du but peut alors étre trouvée avec le mouvement du ballon ou de Neymar :
Tarrive = Apatl — Vbait At = 40m — 0.8¢-1.11 - 10 "sec = 13.3m.

Pour trouver la distance dans le référentiel de Neymar, on peut calculer la distance que Buffon a
parcouru dans ce référentiel pendant le temps de voyage du ballon. Parce que Silva et Neymar ne se
trouvent pas au méme endroit lors de la passe, pour Neymar, la passe est jouée au moment ¢y qui se
trouve avec la transformation de Lorentz :

UNey (dball - dNey)
_ z

t0 = YNey—Buf (0 ) =-1.92-10"%®sec = —19.2ns

Le temps de voyage du ballon vue de Neymar peut étre calculé avec une transformation de Lorentz en
partant du temps trouvé et de ce décalage :

i — .
Aty = Y Ney—Buf - <AtB B UNey( ba,llc2 JUarrwe)) "
0.5-(40m — 13.3
= 1.155- (1.11-1o7sec— (40m m)) +1.92-107% sec
c
= 9.63-10 %sec = 96.3ns
Dans le référentiel de Neymar, Buffon bouge avec une vitesse de vpyffon = —VUNeymar. La nouvelle
distance entre eux (vue de Neymar) est donc :
o o (dNey)B
2Buf(Atn) = (dBuf)N — (VBuf) NAtN = ———— — (Uney) BAtN
YNey—Buf
30m

= —— —0.5c-9.63-10 ®sec = 11.5m
1.155
Remarque : Alternativement et plus facilement on peut directement transformer la distance calculée
dans le référentiel de Buffon vers le référentiel de Neymar :

(xarri'ue)B — 11.5m.

:L‘Buf(AtN) =
YNey—Buf

Pour répondre, il faut comparer la distance trouvée avec la distance du dernier défenseur au but. Dans
le référentiel le défenseur est 15 m devant le but, alors avec une distance de x4yrive = 13.3 m de Neymar
au moment ou il recoit le ballon, on voit que Neymar est au dela du dernier défenseur quand la passe
arrive.

Nous avons déja traité cette question dans la premiere question de I’éxercice, avec les réponses pour
Buffon :
tpus = 20min, 111ns

et pour Neymar :
tNey = 20min, 96.3 ns.
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d) Le travail utilisé par Silva correspond a l’énergie cinétique du ballon, donc le travail relativiste est :

Ehinrel = (Yoall—Buf — 1) X Mpan X ¢* = e 1] 0.5kgc? =3.00-10% 7,
1 _ A9

et I’énergie cinétique classique est :

1 1
Ein,class = = X Mpall X Vhoyy = 5 0-5kg (0.8¢)2 = 1.43-10'0 J.

2

Exercice 3

La bulle 1 qui monte sans encombre n’échange pas de chaleur avec I'eau, elle subit donc un processus
adiabatique, tandis que la bulle 2 subit une expansion isotherme.
On suppose qu'une bulle d’air est un gaz parfait. On suppose aussi que l'air est un gaz di-atomique.
a) Soit Pong la pression au fond du lac et Psypface la pression a la surface avec Pasyrface < Prond-
Au fond du lac, le volume des deux bulles est égal : Vo4 mais plus a la surface. On doit donc comparer

Vadiabatique et ‘/isotherme-
Pour un gaz parfait diatomique sous expansion adiabatique, nous avons :

PV = PV;)

ou vy = 7/5=1.4 . En appliquant dans notre cas, on obtient :

P; P,
y o ond o ) ) o fond
Vadiabatique - P ‘/fond = Vadlabathue - P ‘/fond
surface surface
Pour 'expansion isotherme on utilise la formule des gaz parfaits : PV, = P,V5 ou, pour notre cas, on
p gaz p » P )
obtient :
VfondP fond
V;sotherme = .
P surface

Calculons le rapport des volumes :

1
Vadiabatique _ Viond < Prond > & Prond _ < Prond

I
5
= <1 adiabati < Visoth
=V que L1so erme
Lisotherme Lfond I surface 1 surface 1 surface>

car v > 1. Le volume de la bulle qui a subit une expansion adiabatique est plus petit que le volume
de la bulle qui a subit une transformation isotherme.

b) Pour calculer le volume de chaque bulle a la surface, il nous faut connaitre, d’apres les formules utilisées,
le volume initial (Vionq) et le rapport entre les pressions au fond et & la surface, Pong/ Psurface-

Exercice 4

a) Les trois étapes sont (voir figure) :
1. transformation isochore (V' constant)
2. expansion isobare (P constant)
3. compresion isotherme (processus lent, T' constant)

Etant donné le sens anti-horaire du cycle, il s’agit d’un réfrigérateur.

b) A I'état initial : P1Vy = nRTy. Donc Ty = Dt = - 20amxdL . — 394 8 K
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P,V Ty
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P,, Vi T,

F1GURE 2 — Cycle thermodynamique

¢) Comme il s’agit d’un réfrigérateur, on calcule le coefficient de performance (CP)

Q1|
cp = 1%Ll
W

ou ()1, représente la chaleur extraite de la source froide lors de I’expansion isobare et W est la somme des
travaux (Wtot = I/Visobare + I/I/Yi:;ochore + Wisotherme)~

De plus comme Wsochore = 0, on a

L.Wiot = Wisobare + Wisotherme = nRT7 In xL\}l + P (:EVI - ‘/l)

2. QL = Qisobare = AUisobare + Wisobare - R%R(Tl - TQ) + P2(=77V1 - ‘/1)

Va PVy _ Ty

_ _ _ _ nRI3 _ nRTy _ P _ P _ : .
Et donc, avec V =V, = V5, P, = Py = Vie = o T 2 et Th = 3¢ = JL = <L on obtient :

op_ [MBRT = To) + Po@@Vi = Vi)| _ [n3R(Ty = Ty) + nRTp(w — 1)| _ [n3RT1(1— 3) + nRT3(1 - )|

‘nRTl In Vi 4 Py(zV; — Vl)‘ ~ [nRTy(z—1) —ln(z)nRTY| — |[nRTi(1— 1) — In(z)nRTY|

r—1

7
cpP =<
2

|z — 1 —xIn(x)|

Enfin on peut voir que :
1. CP diminue quand x augmente
2. CP ne dépend pas de T

d)

Vi 4
Wiot = Wisobare +Wisotherme = nRT} In —‘;+P2(zV1—V1) = 3 molx8.314 J.mol 1K' xIn 4——|—P2(4:U—4)
Vi X
Il faut maintenant calculer P :
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De la transformation isochore, on tire ”I;Tl = % et donc % = % ou P, = %. Puis de I'expansion
1 2 2 1
. R 1 1 _ T P1T1
1so.bare7 on trouve : - RT; = nRT; et donc T, = ?E L donc Py = o
Soit au final, ’expression suivante pour le travail total :
w B
Wiot = Wisobare + Wisotherme = 17 In W + 7(«73‘/1 ‘/1)
1

AN. pour =4 Wy = 3mol x 8.314—— x In - + 5 atm(16 — 4) = —5230 J
e) Entropie pour la compression isotherme : dUlsothe,ﬂm6 =0, dQjsotherme = pdV, ou p = ﬁ

et donc

RTdV RdV Vi
ASisotherme:/n VT :/n nRIln 71:—345J (1)

Vv zVi
Energie libre de Gibbs pour la compression isotherme :

RT P
AG:/dG:/dU—I—pdV+Vdp—TdS—SdT:/Vdp:/npdp:nRT11n<Pl

3) = nRT; In(z)

(2)

Exercice 5
a) La chaleur nécessaire pour que la glace fonde completement vaut :
Qg-e = mgcg(0°C' = Tg) + mgLy (3)

oumgy = pyVy = pgﬂ'T‘?nL.

Le premier terme représente la chaleur nécessaire pour élever la température de la glace de sa valeur
initiale (T, = —6°C) a son point de fusion (0°C & la pression atmosphérique). La deuxieme terme
représente la chaleur nécessaire pour faire fondre toute la glace.

Le flux thermique nette du rayonnement absorbé par la bouteille est :

Q A
®= 1= copS(T, —T,) (4)
ou S = 2nr;, L la surface d’échange de la chaleur, T, = 303°K la teinpérature ambiante |, Tg la
température moyenne a l'intérieur de la bouteille. On peut approximer 7'y = 270°K (—3°C') pendant
la phase de I'augmentation de la température au point de fusion, et Ty = 273°K (0°C) pendant la
phase de la fusion de la glace.

Le temps nécessaire pour que la glace fonde completement :

; _ mgcy(0°C —Ty) mgLg _ PgTin cg(0°C —T,) L, (5)
9= eopS(TH —270%)  eopS(T4—273%)  2e0p | TH—-270% ~ T4 - 2734

Application numérique :
tg—e = 1.1870 x 10°s ~ 1 jour 9 heures (6)

b) S’il y a lair il faut rajouter le flux thermique de la conduction. Le flux thermique total est donc :

_ Q _ 4 T, — T
o = A7 eopS(T, — ) + kgijp S ———= 7 (7)

oud = (Tem—5cm)/2 = 1em la distance entre les parois. Le premier terme est le flux du rayonnement,
le deuxieme terme est le flux de la conduction. Comme qu’on a fait dans a) on peut approximer
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zg = 270°K (—3°C) pendant la phase de I'augmentation de la température au point de fusion, et
¢ = 273°K (0°C) pendant la phase de la fusion de la glace.

cg(0°C —T) Ly

PgTin
= +
eop (T4 — 270%) + Kair (T, —270)  eop(T4 — 2734) + Kair(T,, — 273)

tye =

(8)

Application numérique :
ty—e = 3.6514 x 10*s ~ 10 heures 9 minutes 9)

|3kpT, [3kpT,

(Vrms) N = mN: =\ gy = 520m/s (10)
|3kpT, [3kpT,

(Vrms)o, = mOZ“ =\ 5, = 486m/s (11)

La vitesse des molécules d’air est :

La vitesse du Ny vaut :

La vitesse du Oy vaut :

Vair = 0.8(Vrms) Ny + 0.2(Vpms )0, = 513m/s (12)
On peut aussi utiliser la vitesse moyenne v = %. On obtient vy, ~ 479m/s, Vo, =~ 448m/s et

Tair =~ 473m/s.
La force nette sur la bouteille vaut :

1
Frette = iseaﬁtpl% (13)

ou on prendre la moité de la surface latérale de la bouteille (Seyr = 277t L) parce ce qu’on considere
une direction particuliere, et pjo, est la pression due a 1% de la vitesse des molécules d’air. pg ~
température ~ vitesse?. Donc on a :

b1% = (0-01)2patm (14)

Finalement, on obtient :
Frette = et L(0.01)?pagy, ~ 0.45N (15)
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