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Exercice 1

a) Le schéma est montré dans figure 1.

FIGURE 1 — Schéma du systeme

b) Dans I’équilibre la poulie ne tourne pas et il n’y a pas d’accélération. Il suffit donc de
regarder 1’équilibre des forces, qui se compose de la force du ressort et la force de gravité
sur my (en négligeant tous les forces de contrainte qui s’anullent mutuellement). On prend
z comme variable, qui est le déplacement de 'extrémité du ressort de la position d’équilibre
(sans rien attaché). On obtient donc pour la nouvelle position d’équilibre :

ZF = mg—kzn = 0

= 7 = %:4.9cm. (1)



¢) On peut traiter les deux cotés du cable séparément avec des équations du mouvement de
translation (2eme loi de Newton pour la translation) et ensuite combiner les deux cotés
par I’équation du mouvement de la poulie (2¢me loi de Newton pour la rotation). Avec cet
approche, les forces de contrainte tirant le cable d’en haut doivent étre traitées comme des
inconnues sur les deux cotés de la poulie (T} et T dans fig. 1). Les équations, respectivement,
de gauche, de droite et de la poulie sont les suivants :

—mlé = mlg—l—Tl
0 = TQ —kz
IH = X (fl +,_f2),

ou on a utilisé que la force de gravité et du ressort sont Fy, = —mg et F..s = —kz, avec
z la distance entre l'extremité du ressort et la position d’équilibre du ressort (sans rien
attaché). En plus, la partie gauche de la deuxieme équation est zéro, car il n’y a pas de masse
d’inertie. L’accélération de la masse m; est également traitée avec la variable z, parce que
le déplacement de m; est équivalent au négative du déplacement de I'extrémité du ressort
(Zm1 = —Zres €t Zm1 = —Zpes). Les deux premieres équations nous donnent les forces dans le
cable de gauche et droite :

T = mig—mZz
et T2 = ]{/’Z,
ce qui peut étre utilisé dans I’équation de la rotation. Cela nous amene a 1’équation suivante :
16 = R(myg — my % — kz), (2)
MR?

Maintenant on peut utiliser I'’expression pour le moment d’inertie de la poulie I = == et la
relation entre I'angle et le déplacement du cable :

z R=const ~ z
0=— — 0=—.
R R
Par conséquent, on obtient I’équation suivante :
MR? 2
— = R(mig—miZ—kz
5 R (m1g 1 )
% +my o g
k k

Maintenant on peut faire un changement de variable, parce que le mouvement n’est plus
autour de z = 0, mais autour du nouveau point d’équilibre z = z; :

m
Z/IZ+21:Z+TIQ et alors =3

En utilisant ces expressions dans 1’équation de la rotation modifiée on obtient :

M
my+ 5,

k

— 2 = -z 3
m1+% ()



Cette derniere version de I’équation du mouvement corresponde a une équation du mouve-
. . 2 . . . .
ment d’un oscillateur harmonique (%5 = —const - z), donc aussi l'objet (m;), qui suit cet

mouvement, est sujet a un mouvement harmonique.
Remarque :

On peut aussi utiliser un autre approche avec une seule équation de mouvement (rotation
de la poulie) en traitant l'inertie de la masse m; comme moment d’inertie supplementaire
du systeme. Car le mouvement ne depend pas de la position initiale de m; par rapport a la
poulie, le mouvement est le méme que si la masse m; est placée sur la surface de la poulie.
Le moment d’inertie est donc celui d'une masse ponctuelle a une distance R de I'axe de la
rotation plus le moment d’inertie de la poulie :

M R?

[:m1R2+ 9

La 2eme loi de Newton pour la rotation devient alors :

0 = #xF
MR2\
= <m1R2 + 5 ) 0 = R(mig—kz).

M\ .
e <m1—|—7) RO = myg—kz.

Si maintenant I'angle 6 est de nouveau remplacé par un déplacement vertical :

4 R=const -y z
R R
on retrouve la méme équation que avec I'autre approche (eq. 3) :
my + %z _ g ,
kT ok '

La suite se fait comme avec 'autre approche (changement de variables).

d) La fréquence angulaire est directement identifié par la constante devant le déplacement dans
I'équation finale (No. 3) de la partie c) :

k
w = —_—.
m1+%

La période est trouvée facilement grace a cette fréquence angulaire :

27T m1+M
T=—=2 ——2 =063 4
=2 k s (4)



e) La vitesse de I'objet peut étre trouvée avec la dérivée de la solution de I’équation du mou-
vement :

Z(t) = A-cos(wt) (élongation maximale pour t=0)
— Z(t) = Aw-cos(wt)
k
= Vmaz = Aw=A/— =0.5m/s 5
g =05 5)

f) La force maximale que le cable peut subir est :

d 2
Frupt = Orupt * S = Opupt = T <§) =141 N (6)

Il faut comparer cette limite avec la force maximale que subit le cable, qui est la force du
ressort au moment de I’élongation maximale plus la force de gravité de la masse m; :

Foae = mg + kA =59 N

Cette force peut aussi etre calculée par la force du ressort par rapport au point d’équilibre
initial :
Frae = k(A+2z1) =kA+mg=59N

Donc, comme la force maximale est inférieure a la force de rupture, le cable ne cassera pas.

Exercice 2

Soit S le référentiel lié a la Terre, et S’ le référentiel 1ié au train, ce dernier se déplacant a
la vitesse v = 0.8 - ¢ selon 'axe x par rapport a S. Cette vitesse donne un facteur relativiste
v = 1+0.s2 ~ 1.667.

La longueur au repos du train est mesurée dans le référentiel du train (référentiel propre) et vaut
L/, = 1000 m. La longueur propre du tunnel (dans le référentiel de la Terre) vaut L, = 1000
m. On peut donc calculer la longueur du train dans le référentiel de la Terre et la longueur du
tunnel dans le référentiel du train, au moyen des transformations de Lorentz :

At = (At — ZAx)

Ax' = ~(Az —vAt) (7)
Ay = Ay

A = Az

et les transformations de Lorentz inverses :

At = (A + ZA)

Ax = y(Ax' +vAt) (8)
Ay = Ay
Az = A



En choisisant ’axe x dans le sens du déplacement du train.
La longueur du train dans le référentiel S est donnée par Az’ = y(Ax — xt), avec At = 0, car
on fait la mesure dans le référentiel S, Ax = Ly, et Az’ = L7,.. On a donc :

o LTT’
fy

On retrouve la formule de contraction des longueurs.

De méme, la longueur du tunnel dans le référentiel S’ est donnée par Ax = y(Ax’ + vAt'), car
cette fois At" = 0 (on fait la mesure dans le référentiel S’) et avec Ax = Ly, et Az’ = L7,,. On
retrouve la formule de contraction des longeurs :

Lz,
Ly, == =600m (10)
g

Ly, = 600m 9)

a) On définit 'événement A : I’avant du train pénetre dans le tunnel; et I’événement B :
I’avant du train sort du tunnel. On peut donc écrire :

(45t4) = (0;0) (11)

Ly
(zp;tp) = (LTU;L> = (1000;4.167-107° s) (12)
v

En utilisant les transformations de Lorentz, on obtient pour l'intervalle de temps entre
les événements A et B, dans le référentiel du train :

v
At = (At . 0—2Aq;> (13)
LTu ULTu
_ _ 14
v(F - ) (14)
v L1y v?
= UT <1 - g) (15)
LTu
— 16
o (16)
=25-10"%s (17)

La montre du conducteur indiquera donc 15h00 passées de 2.5 us.

b) Soit I'évenement C, Iarriere du train entre dans le tunnel. En restant dans le référentiel
de la Terre, le train mesure : Ly, = 600 m, et entre dans le tunnel a la vitesse v = 0.8 - c.
Le temps qui s’est écoulé pour effectuer cette distance est donc :

LT’I"
(%

At =t —ty= =25-107% s (18)
On trouve le méme résultat qu’au point précédent car, dans notre cas, Ly, = Ly, /7.

¢) L’avant du train sort a tp = Lvﬂ = 4.167-10"%s. L’arriere du train pénetre a l'intérieur

du tunnel a to = Lgr =25-10"5s.

L’arriere du train avance donc de Ax = vAt =v(tg—to) =v (% — %) = Lp,— Ly, =
400 m.




d) Pour que le train soit contenu entiérement dans le tunnel il faut que 'avant du train sorte
du tunnel apres que I'arriere soit entré. Dans le référentiel S, cela se traduit par tg—to > 0,

ce qui est vérifié. Dans le référentiel du train, il faut que t’3 —t;, > 0. On sait que t’y = Lv%
et on peut calcuer t(, avec la transformation de Lorentz : ti, = y(t.— 5z.) = ”y%, puisque
zc = 0. Donc tly — t, = %(Lzu —Ly,) = (L, — Lfp,) < 0. Donc le train n’est pas

complétement contenu dans le tunnel dans le référentiel du train.

Exercice 3

a) Les trois étapes sont :
1. compression adiabatique (processus rapide ou T, P et V' varient)
2. processus isobare (P constant tandis que 7" et V' varient)
3. détente isotherme (processus lent, T constant, tandis que V' et P varient)

b) Pour calculer le travail total, il faut calculer le travail de chaque processus indépendamment
et en faire la somme.

Compression adiabatique

5 5
Wadia = —AU = —§nRAT = —§nR(T2 - Tl) (19)
De plus, comme T} = 300K
n= M6 19mor (20)
R,

ot Vi = mr*H = 0.0048m3 (le volume du verre vide) et Py = Py, = latm = 1,013.10°Pa

De plus
Y

T —
2 nRik
ou V5 est le volume apres compression et Py, = pgAh + Patm = 1000%9.818%10m + Patm =

199400Pa (la pression a -10m)
On sait également que :

(21)

PV = RVY (22)
ou vy = 1.4. Et donc
A%
Vo = {| ==L = 0.003m? (23)
P
et RV,
Ty =2 = 378K 24
2= o (24)
ou autre possibilitA©) de calcul
125
Ty=T= =364K (25)
P



Ce qui permet d’écrire en remplacant :
5
Wadm = —0U = —EnR(TQ — Tl) = —308J
(ou Wygie = —252.7J en utilisant Ty = 364K)

Processus isobare

Wisobare:/PdV:P/dV:P(Vz’)_‘/Q)

ou V3 est le volume apres le processus isobare. De plus

T, T3
Vo Vs
et donc
Vs = Vals _ 4 g024m?
Ty
Et donc

Wisobare = /Pdv = P/dv = P?(‘/B - sz) = —119.6J

Détente isotherme

v
Wisotherme = / PdV = nRTg,znv4 —192.1J
3

car V, = mr?h = 0.0036m?> avec h = 18cm. Donc le travail total est :
Wtotal - Wadi(z + Wisobare + I/Vz'sotherme = —235.5J

(ou Wit = —180.2J en utilisant W45, = —252.7.J)

c¢) Pour calculer la chaleur échangée, il faut sommer les chaleurs respectives

Compression adiabatique

Q=0

Processus isobare

Q=AU-W = gnRAT —W = gnR(Tg —Ty) 4+ 119.6 = —188.4]

(ou @ = —133.1J en utilisant Tp = —364K)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)



Détente isotherme
Q=W =192.1J (35)

et donc la chaleur échangée avec I'environnement est :

Qtoml - Qadia + Qisobare + Qisotherme = 3.6J (36)

(ou Qotar = 59J en utilisant Q4 = —133.1)

d) La température maximale de 'air est celle juste apres la compression adiabatique, T} =
T, = 378K (ou 364 K). En effet I'environnement fournit du travail au systeme faisant aug-
menter I'énergie thermique.

Exercice 4

a) Le cycle décrit dans le texte est montré dans la figure 2.
b) Le sens de rotation il nous indique qu’il s’agit d’un réfrigérateur.
¢) Nous pouvons distinguer trois étapes :
— détente adiabatique (V1, p1, Ty — Va, p2, To )
— détente isobare (Va, po, Ty — V3, p3, T3 ) avec ps = po
— compression isotherme (V3, ps, T35 — Vi, p1, T1 ) avec T3 =Ty
Par rapport a la compression isotherme nous connaissons la relation :

Va=3-V1 =9L

En exploitant la propriété des gas parfaits pour le premier état :

2 -3L
p =P Hatme 3L g
nRk 4mol - 0.0821 72—~

Pour la transformation isotherme on applique la relation pV = const :

piVi = p3Vs

P1V1 plvl P1
_ _ _ DU g7t
Ps= T T 3y, T 3 arm

Sachant ps nous pouvons utiliser p;Vy" = po V) pour la transformation adiabatique, donc :

Vo = [22V0)5 = 6.6L

P2
La temperature 75 est simplement :
% 6.7atm - 6.6 L
T, =122 O — 13465 K
nR 4mol - 0.0821



d) Vu qu’il s’agit d’un réfrigérateur on parle de coefficient de performance (CP) :

|Qc|

W

ol ), est la chaleur enlevée a la température Ty, et W est le travail effectué, donné par la
somme des travaux dans chaque transformation. C’est pas nécessaire de calculer les travaux
si on utilise :

CP =

QL]
CP=——"~"
Q| — Q1|
ou :

v
QH - stoth - zsoth - nRTllnv == _6675 J
3

et

5
Qr = Qisor = Aoy + Wisos = ng RAT + py(Vs — Va) = 3994.9 + 1770.9.] = 5765.8.J

En utilisant ces valeurs on obtient CP = 6.3.
e) Si on utilise la définition de la variation d’entropie :

as— [

on déduit que la variation d’entropie pour 'adiabatique est zéro parce que il s’agit d’une
transformation sans échange de chaleur. Dans la transformation isobare :

dQisop = dU + dW = ncydT + pdV
et :
V3

W

B dr  [pdV T
AS;sop = /ncv T + =" Rln(TQ) + nRIn(

avec cy = gR. Pour un isobare :
— = const

donc : - Vi Vi
ASjeop = N—= Rlnv2 = ncPlnv2 = 36.1J

Dans une transformation isotherme dU = 0 donc d@Q) = pdV avec p = % dont :

nRT dV nR dV Vi
A ” = _—— _—= — .
S’Lsot / VT / V Rl ‘/3 36 5J/K

e

En effet sur un cycle réversible :



f) Un bon gas (ou liquide) réfrigérant doit avoir une capacité thermique élevée conséquence
d’une quantité élevée de chaleur échangée pour un certain changement de température. Donc
le processus est plus efficace si on utilise des gas diatomique. Dans la définition de CP on
constate en effet qu’en augmentant cp CP, augmente aussi. Autrement dit, le coefficient ~
est plus petit pour un gas diatomique, ce qui fait que ’adiabate soit plus raide : donc Qg
reste le méme et (), augmente (7% est plus basse et V5 plus petit).

Exercice 5

a) Pour calculer la température que la Terre aurait eu sans atmosphere Trrepre—s.q., On doit faire
le balance entre la puissance rayonnée F,,, et la puissance absorbée P, par la surface de la
Terre. Considérant I’albedo A = 0.3, seulement une fraction (1 — A) de la puissance incident
Pine = 13000/ m? peux étre absorbée, sur une surface effective donnée pas un cercle de rayon
égal au rayon de la Terre Ry (on peut assumer la radiation solaire perpendiculaire a la surface
terrestre), comme montre dans la Figure (77).

La puissance émise peut étre calculée avec la loi de Stefan - Boltzmann en prenant toute la
surface de la Terre. On trouve :
Pray = Labs — PSOZ = JB47TR%T§£€T‘T€78.(J,. = meﬂ'R%(l - A) (37)
ou Pg, est la puissance venant du Soleil et Treresq. €st la température de la Terre sans
atmosphere. Cela donne :

pznc(l - A) 1/
40’3

~ 252K = —21°  (38)

{ 1300W/m?2 x (1 —0.3) 1V

T erre—s.a. —
g { 4% 5.7-10-3W/(m2K*)

Cette valeur correspond pas a la réalité, clairement. On doit donc prendre en compte I’atmo-
sphere et son effet de serre.

b) On commence écrivent le balance thermique entre puissance absorbée P, et la puissance
rayonnée P, pour une couche 7 :

Pray = Faps = -1+ Pi+1 = 20—351'7-;4 = O'BSi<T'Z'{1 + 7_;4+1> (39)

ol P! est la puissance absorbée venant de la couche 7, S; est la surface de la couche i et on
a prix en compte que une couche rayonne sur ses deux cotes. Pour la surface de la Terre, on
aura :

Pray:Pabs:PSol+P1 = 0347TR%T4

Terre

= pmcwR%(l —A)+ JBWR%Tf (40)

Pour le cas avec 3 couches on arrive donc au systeme suivant de trois équations et trois
inconnues et sa solution general :

T% _ inz(l_A) +T14 . 1/4
erre op 33— inc 1—A
e (41)

o4 = T} + T} dos

10



avec 13 = Trerre—sa. €6 Ty = Trerre. On peut donc calculer la température pour chaque

couche :
Trerre ~ 355K = 82°

Ty ~ 331K = 59°
Ty ~ 299K — 26°
T3 ~ 252K = —21° = Trrepre—saa.

(42)

¢) Une facon pour estimer I'importance de la puissance transmise par conduction dans notre
cas est de calculer le rapport entre la puissance par rayonnement F,,, et la puissance par

conduction P.,, :
Pray - O'BST%

erre

Pcon k(TTerre - Tcou)S/d -
5.7-1075W/(m2K%) x (290K)* x 1.5-10°m
B 0.03W/(mK) x 38K

ol on a néglige la température de 'atmosphere pour la calcul de la puissance rayonnée
(voir comment le résultat change en considérant la température de l’atmosphere pour le
rayonnement). C’est claire comme la conduction c’est pas importante pour la température
d’équilibre de la Terre.

d) Le mécanisme qui joue un role importante est la convection des courants d’air dans I’atmo-
sphere qui contribue a la dissipation de la chaleur.

~5.3-10° (43)

11



FiGUuRrE 2 — Cycle Ex.4.
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