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Exercice 1

a) Le schéma est montré dans figure 1.
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Figure 1 – Schéma du système

b) Dans l’équilibre la poulie ne tourne pas et il n’y a pas d’accélération. Il suffit donc de
regarder l’équilibre des forces, qui se compose de la force du ressort et la force de gravité
sur m1 (en négligeant tous les forces de contrainte qui s’anullent mutuellement). On prend
z comme variable, qui est le déplacement de l’extrémité du ressort de la position d’équilibre
(sans rien attaché). On obtient donc pour la nouvelle position d’équilibre :∑

F = mg − kz1 = 0

=⇒ z1 =
mg

k
= 4.9 cm. (1)
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c) On peut traiter les deux cotés du câble séparément avec des équations du mouvement de
translation (2ème loi de Newton pour la translation) et ensuite combiner les deux cotés
par l’équation du mouvement de la poulie (2ème loi de Newton pour la rotation). Avec cet
approche, les forces de contrainte tirant le câble d’en haut doivent être traitées comme des
inconnues sur les deux cotés de la poulie (T1 et T2 dans fig. 1). Les équations, respectivement,
de gauche, de droite et de la poulie sont les suivants :

−m1z̈ = m1g + T1

0 = T2 − kz
I~̈θ = ~r × (~T1 + ~T2),

où on a utilisé que la force de gravité et du ressort sont Fg = −mg et Fres = −kz, avec
z la distance entre l’extremité du ressort et la position d’équilibre du ressort (sans rien
attaché). En plus, la partie gauche de la deuxième équation est zéro, car il n’y a pas de masse
d’inertie. L’accélération de la masse m1 est également traitée avec la variable z, parce que
le déplacement de m1 est équivalent au négative du déplacement de l’extrémité du ressort
(zm1 = −zres et z̈m1 = −z̈res). Les deux premières équations nous donnent les forces dans le
câble de gauche et droite :

T1 = m1g −m1z̈

et T2 = kz,

ce qui peut être utilisé dans l’équation de la rotation. Cela nous amène à l’équation suivante :

Iθ̈ = R(m1g −m1z̈ − kz), (2)

Maintenant on peut utiliser l’expression pour le moment d’inertie de la poulie I = MR2

2
et la

relation entre l’angle et le déplacement du câble :

θ =
z

R

R=const−→ θ̈ =
z̈

R
.

Par conséquent, on obtient l’équation suivante :

MR2

2

z̈

R
= R(m1g −m1z̈ − kz)

M
2

+m1

k
z̈ =

m1g

k
− z

Maintenant on peut faire un changement de variable, parce que le mouvement n’est plus
autour de z = 0, mais autour du nouveau point d’équilibre z = z1 :

z′ = z + z1 = z +
m1g

k
et alors z̈′ = z̈

En utilisant ces expressions dans l’équation de la rotation modifiée on obtient :

m1 + M
2

k
z̈′ = −z′.

=⇒ z̈′ = − k

m1 + M
2

z′. (3)
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Cette dernière version de l’équation du mouvement corresponde à une équation du mouve-
ment d’un oscillateur harmonique (∂

2z
∂t2

= −const · z), donc aussi l’objet (m1), qui suit cet
mouvement, est sujet à un mouvement harmonique.

Remarque :

On peut aussi utiliser un autre approche avec une seule équation de mouvement (rotation
de la poulie) en traitant l’inertie de la masse m1 comme moment d’inertie supplementaire
du système. Car le mouvement ne depend pas de la position initiale de m1 par rapport à la
poulie, le mouvement est le même que si la masse m1 est placée sur la surface de la poulie.
Le moment d’inertie est donc celui d’une masse ponctuelle à une distance R de l’axe de la
rotation plus le moment d’inertie de la poulie :

I = m1R
2 +

MR2

2

La 2ème loi de Newton pour la rotation devient alors :

I~̈θ = ~r × ~F

=⇒
(
m1R

2 +
MR2

2

)
θ̈ = R(m1g − kz).

=⇒
(
m1 +

M

2

)
Rθ̈ = m1g − kz.

Si maintenant l’angle θ est de nouveau remplacé par un déplacement vertical :

θ =
z

R

R=const−→ θ̈ =
z̈

R

on retrouve la même équation que avec l’autre approche (eq. 3) :

m1 + M
2

k
z̈ =

m1g

k
− z.

La suite se fait comme avec l’autre approche (changement de variables).

d) La fréquence angulaire est directement identifié par la constante devant le déplacement dans
l’équation finale (No. 3) de la partie c) :

ω =

√
k

m1 + M
2

.

La période est trouvée facilement grâce à cette fréquence angulaire :

T =
2π

ω
= 2π

√
m1 + M

2

k
= 0.63 s (4)
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e) La vitesse de l’objet peut être trouvée avec la dérivée de la solution de l’équation du mou-
vement :

z′(t) = A · cos(ωt) (élongation maximale pour t=0)

=⇒ ż′(t) = Aω · cos(ωt)

=⇒ vmax = Aω = A

√
k

m1 + M
2

= 0.5m/s (5)

f) La force maximale que le câble peut subir est :

Frupt = σrupt ·S = σrupt · π

(
d

2

)2

= 141N (6)

Il faut comparer cette limite avec la force maximale que subit le câble, qui est la force du
ressort au moment de l’élongation maximale plus la force de gravité de la masse m1 :

Fmax = mg + kA = 59N

Cette force peut aussi être calculée par la force du ressort par rapport au point d’équilibre
initial :

Fmax = k(A+ z1) = kA+mg = 59N

Donc, comme la force maximale est inférieure à la force de rupture, le câble ne cassera pas.

Exercice 2

Soit S le référentiel lié à la Terre, et S ′ le référentiel lié au train, ce dernier se déplaçant à
la vitesse v = 0.8 · c selon l’axe x par rapport à S. Cette vitesse donne un facteur relativiste
γ = 1√

1−0.82
' 1.667.

La longueur au repos du train est mesurée dans le référentiel du train (référentiel propre) et vaut
L′Tr = 1000 m. La longueur propre du tunnel (dans le référentiel de la Terre) vaut LTu = 1000
m. On peut donc calculer la longueur du train dans le référentiel de la Terre et la longueur du
tunnel dans le référentiel du train, au moyen des transformations de Lorentz :

∆t′ = γ(∆t− v
c2

∆x)
∆x′ = γ(∆x− v∆t)
∆y′ = ∆y
∆z′ = ∆z

(7)

et les transformations de Lorentz inverses :
∆t = γ(∆t′ + v

c2
∆x′)

∆x = γ(∆x′ + v∆t′)
∆y = ∆y′

∆z = ∆z′

(8)
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En choisisant l’axe x dans le sens du déplacement du train.
La longueur du train dans le référentiel S est donnée par ∆x′ = γ(∆x− v

∆
t), avec ∆t = 0, car

on fait la mesure dans le référentiel S, ∆x = LTr et ∆x′ = L′Tr. On a donc :

LTr =
LTr′

γ
= 600 m (9)

On retrouve la formule de contraction des longueurs.
De même, la longueur du tunnel dans le référentiel S ′ est donnée par ∆x = γ(∆x′ + v∆t′), car
cette fois ∆t′ = 0 (on fait la mesure dans le référentiel S ′) et avec ∆x = LTu et ∆x′ = L′Tu. On
retrouve la formule de contraction des longeurs :

L′Tu =
LTu
γ

= 600 m (10)

a) On définit l’événement A : l’avant du train pénètre dans le tunnel ; et l’événement B :
l’avant du train sort du tunnel. On peut donc écrire :

(xA; tA) = (0; 0) (11)

(xB; tB) =

(
LTu;

LTu
v

)
=
(
1000; 4.167 · 10−6 s

)
(12)

En utilisant les transformations de Lorentz, on obtient pour l’intervalle de temps entre
les événements A et B, dans le référentiel du train :

∆t′ = γ
(

∆t− v

c2
∆x
)

(13)

= γ

(
LTu
v
− vLTu

c2

)
(14)

=
γLTu
v

(
1− v2

c2

)
(15)

=
LTu
γv

(16)

= 2.5 · 10−6 s (17)

La montre du conducteur indiquera donc 15h00 passées de 2.5 µs.

b) Soit l’évenement C, l’arrière du train entre dans le tunnel. En restant dans le référentiel
de la Terre, le train mesure : LTr = 600 m, et entre dans le tunnel à la vitesse v = 0.8 · c.
Le temps qui s’est écoulé pour effectuer cette distance est donc :

∆t = tC − tA =
LTr
v

= 2.5 · 10−6 s (18)

On trouve le même résultat qu’au point précédent car, dans notre cas, LTr = LTu/γ.

c) L’avant du train sort à tB = LTu
v

= 4.167 · 10−6 s. L’arrière du train pénètre à l’intérieur

du tunnel à tC = LTr
v

= 2.5 · 10−6 s.

L’arrière du train avance donc de ∆x = v∆t = v(tB− tC) = v
(
LTu
v
− LTr

v

)
= LTu−LTr =

400 m.
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d) Pour que le train soit contenu entiérement dans le tunnel il faut que l’avant du train sorte
du tunnel après que l’arrière soit entré. Dans le référentiel S, cela se traduit par tB−tC > 0,
ce qui est vérifié. Dans le référentiel du train, il faut que t′B−t′C > 0. On sait que t′B = LTu

γv

et on peut calcuer t′C avec la transformation de Lorentz : t′C = γ(tc− v
c2
xc) = γ LTr

v
, puisque

xC = 0. Donc t′B − t′C = 1
v
(LTu

γ
− γLTr) = 1

v
(L′Tu − L′Tr) < 0. Donc le train n’est pas

complétement contenu dans le tunnel dans le référentiel du train.

Exercice 3

a) Les trois étapes sont :
1. compression adiabatique (processus rapide où T , P et V varient)
2. processus isobare (P constant tandis que T et V varient)
3. détente isotherme (processus lent, T constant, tandis que V et P varient)

b) Pour calculer le travail total, il faut calculer le travail de chaque processus indépendamment
et en faire la somme.

Compression adiabatique :

Wadia = −∆U = −5

2
nR∆T = −5

2
nR(T2 − T1) (19)

De plus, comme T1 = 300K

n =
P1V1

RT1

= 0.19mol (20)

où V1 = πr2H = 0.0048m3 (le volume du verre vide) et P1 = Patm = 1atm = 1, 013.105Pa
De plus

T2 =
P2V2

nR
(21)

où V2 est le volume après compression et P2 = ρg∆h+Patm = 1000 kg
m3 9.81m

s2
10m+Patm =

199400Pa (la pression à -10m)
On sait également que :

P1V
γ

1 = P2V
γ

2 (22)

où γ = 1.4. Et donc

V2 = γ

√
P1V

γ
1

P2

= 0.003m3 (23)

et

T2 =
P2V2

nR
= 378K (24)

ou autre possibilitÃ© de calcul

T2 = T1
P2

P1

γ−1
γ

= 364K (25)
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Ce qui permet d’écrire en remplaçant :

Wadia = −δU = −5

2
nR(T2 − T1) = −308J (26)

(ou Wadia = −252.7J en utilisant T2 = 364K)

Processus isobare :

Wisobare =

∫
PdV = P

∫
dV = P (V3 − V2) (27)

où V3 est le volume après le processus isobare. De plus

T2

V2

=
T3

V3

(28)

et donc

V3 =
V2T3

T2

= 0.0024m3 (29)

Et donc

Wisobare =

∫
PdV = P

∫
dV = P2(V3 − V2) = −119.6J (30)

Détente isotherme :

Wisotherme =

∫
PdV = nRT3ln

V4

V3

= 192.1J (31)

car V4 = πr2h = 0.0036m3 avec h = 18cm. Donc le travail total est :

Wtotal = Wadia +Wisobare +Wisotherme = −235.5J (32)

(ou Wtotal = −180.2J en utilisant Wadia = −252.7J)

c) Pour calculer la chaleur échangée, il faut sommer les chaleurs respectives

Compression adiabatique :
Q = 0 (33)

Processus isobare :

Q = ∆U −W =
5

2
nR∆T −W =

5

2
nR(T3 − T2) + 119.6 = −188.4J (34)

(ou Q = −133.1J en utilisant T2 = −364K)
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Détente isotherme :
Q = W = 192.1J (35)

et donc la chaleur échangée avec l’environnement est :

Qtotal = Qadia +Qisobare +Qisotherme = 3.6J (36)

(ou Qtotal = 59J en utilisant Qadia = −133.1)

d) La température maximale de l’air est celle juste après la compression adiabatique, Tmax =
T2 = 378K (ou 364 K). En effet l’environnement fournit du travail au système faisant aug-
menter l’énergie thermique.

Exercice 4

a) Le cycle décrit dans le texte est montré dans la figure 2.
b) Le sens de rotation il nous indique qu’il s’agit d’un réfrigérateur.
c) Nous pouvons distinguer trois étapes :

– détente adiabatique (V1, p1, T1 → V2, p2, T2 )
– détente isobare (V2, p2, T2 → V3, p3, T3 ) avec p3 = p2

– compression isotherme (V3, p3, T3 → V1, p1, T1 ) avec T3 = T1

Par rapport à la compression isotherme nous connaissons la relation :

V3 = 3 ·V1 = 9L

En exploitant la propriété des gas parfaits pour le premier état :

T1 =
p1V1

nR
=

20atm · 3L

4mol · 0.0821 atm ·L
mol ·K

= 182.7K

Pour la transformation isotherme on applique la relation pV = const :

p1V1 = p3V3

p3 =
p1V1

V3

=
p1V1

3V1

=
p1

3
= 6.7atm

Sachant p2 nous pouvons utiliser p1V
γ

1 = p2V
γ

2 pour la transformation adiabatique, donc :

V2 = [
p1

p2

V γ
1 ]

1
γ = 6.6L

La temperature T2 est simplement :

T2 =
p2V2

nR
=

6.7atm · 6.6L

4mol · 0.0821 atm ·L
mol ·K

= 134.65K
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d) Vu qu’il s’agit d’un réfrigérateur on parle de coefficient de performance (CP) :

CP =
|QL|
|W |

où QL est la chaleur enlevée à la température TL et W est le travail effectué, donné par la
somme des travaux dans chaque transformation. C’est pas nécessaire de calculer les travaux
si on utilise :

CP =
|QL|

|QH | − |QL|
où :

QH = Qisoth = Wisoth = nRT1ln
V1

V3

= −6675 J

et

QL = Qisob = ∆Uisob +Wisob = n
5

2
R∆T + p2(V3 − V2) = 3994.9J + 1770.9J = 5765.8 J

En utilisant ces valeurs on obtient CP = 6.3.
e) Si on utilise la définition de la variation d’entropie :

∆S =

∫
dQ

T

on déduit que la variation d’entropie pour l’adiabatique est zéro parce que il s’agit d’une
transformation sans échange de chaleur. Dans la transformation isobare :

dQisob = dU + dW = ncV dT + pdV

et :

∆Sisob =

∫
ncV

dT

T
+

∫
pdV

T
= n

5

2
Rln(

T3

T2

) + nRln(
V3

V2

)

avec cV = 5
2
R. Pour un isobare :

T

V
= const

donc :

∆Sisob = n
7

2
Rln

V3

V2

= ncP ln
V3

V2

= 36.1J

Dans une transformation isotherme dU = 0 donc dQ = pdV avec p = nRT
V

dont :

∆Sisot =

∫
nRT dV

V T
=

∫
nRdV

V
= nR ln

V1

V3

= −36.5J/K

En effet sur un cycle réversible : ∮
dQ

T
= 0
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f) Un bon gas (ou liquide) réfrigérant doit avoir une capacité thermique élevée conséquence
d’une quantité élevée de chaleur échangée pour un certain changement de température. Donc
le processus est plus efficace si on utilise des gas diatomique. Dans la définition de CP on
constate en effet qu’en augmentant cP CP, augmente aussi. Autrement dit, le coefficient γ
est plus petit pour un gas diatomique, ce qui fait que l’adiabate soit plus raide : donc QH

reste le même et QL augmente (T2 est plus basse et V2 plus petit).

Exercice 5

a) Pour calculer la température que la Terre aurait eu sans atmosphère TTerre−s.a., on doit faire
le balance entre la puissance rayonnée Pray et la puissance absorbée Pabs par la surface de la
Terre. Considérant l’albedo A = 0.3, seulement une fraction (1−A) de la puissance incident
pinc = 1300W/m2 peux être absorbée, sur une surface effective donnée pas un cercle de rayon
égal au rayon de la Terre RT (on peut assumer la radiation solaire perpendiculaire à la surface
terrestre), comme montre dans la Figure (??).
La puissance émise peut être calculée avec la loi de Stefan - Boltzmann en prenant toute la
surface de la Terre. On trouve :

Pray = Pabs = PSol ⇒ σB4πR2
TT

4
Terre−s.a. = pincπR

2
T (1− A) (37)

où PSol est la puissance venant du Soleil et TTerre−s.a. est la température de la Terre sans
atmosphère. Cela donne :

TTerre−s.a. =

[
pinc(1− A)

4σB

]1/4

=

[
1300W/m2 × (1− 0.3)

4× 5.7 · 10−8W/(m2K4)

]1/4

' 252K = −21◦ (38)

Cette valeur correspond pas a la réalité, clairement. On doit donc prendre en compte l’atmo-
sphère et son effet de serre.

b) On commence écrivent le balance thermique entre puissance absorbée Pabs et la puissance
rayonnée Pray pour une couche i :

Pray = Pabs = Pi−1 + Pi+1 ⇒ 2σBSiT
4
i = σBSi(T

4
i−1 + T 4

i+1) (39)

où P i est la puissance absorbée venant de la couche i, Si est la surface de la couche i et on
a prix en compte que une couche rayonne sur ses deux cotes. Pour la surface de la Terre, on
aura :

Pray = Pabs = PSol + P1 ⇒ σB4πR2
TT

4
Terre = pincπR

2
T (1− A) + σBπR

2
TT

4
1 (40)

Pour le cas avec 3 couches on arrive donc au système suivant de trois équations et trois
inconnues et sa solution general : T 4

Terre = pinc(1−A)
4σB

+ T 4
1

2T 4
1 = T 4

2 + T 4
Terre

2T 4
2 = T 4

3 + T 4
1

⇒ Ti =

[
T 4

3 +
(3− i)pinc(1− A)

4σB

]1/4

(41)
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avec T3 = TTerre−s.a. et T0 = TTerre. On peut donc calculer la température pour chaque
couche : 

TTerre ' 355K = 82◦

T1 ' 331K = 59◦

T2 ' 299K = 26◦

T3 ' 252K = −21◦ = TTerre−s.a.

(42)

c) Une facon pour estimer l’importance de la puissance transmise par conduction dans notre
cas est de calculer le rapport entre la puissance par rayonnement Pray et la puissance par
conduction Pcon :

Pray
Pcon

=
σBST

4
Terre

k(TTerre − Tcou)S/d
=

=
5.7 · 10−8W/(m2K4)× (290K)4 × 1.5 · 105m

0.03W/(mK)× 38K
' 5.3 · 108 (43)

où on a néglige la température de l’atmosphère pour la calcul de la puissance rayonnée
(voir comment le résultat change en considérant la température de l’atmosphère pour le
rayonnement). C’est claire comme la conduction c’est pas importante pour la température
d’équilibre de la Terre.

d) Le mécanisme qui joue un rôle importante est la convection des courants d’air dans l’atmo-
sphère qui contribue à la dissipation de la chaleur.
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Figure 2 – Cycle Ex.4.
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