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Exercice 1

a) L’énergie potentielle initiale du ressort dû à sa compression (xi = −20 cm) est transfor-
mée complètement en énergie cinétique à l’instant où les deux masses arrivent ensemble
au point d’équilibre. La conservation de l’énergie mécanique entre ces deux points nous
donne :

E1,2 =
1

2
kx2

i =
1

2
(m1 +m2) v2, (1)

d’où on peut trouver la vitesse au point d’équilibre :

v =

√
kx2

i

m1 +m2

. (2)

Pendant que la masse m2 continue avec cette vitesse v2 = v sans freinage, la masse m1

continue l’oscillation. L’énergie cinétique de cette masse est de nouveau transférée en
énergie potentielle au moment de l’allongement maximal (amplitude A1) :

E1 =
1

2
kA2

1 =
1

2
m1v

2

=
1

2
m1

kx2
i

m1 +m2

=
1

2

m1

m1 +m2

kx2
i . (3)

Donc, l’amplitude de l’oscillation après le détachement de m2 est :

A1 =

√
m1

m1 +m2

xi = 15 cm. (4)

L’amplitude change quand la masse m2 perd contact. m2 part avec une partie de l’énergie
initiale (sous forme cinétique) et m1 oscille avec le reste de l’énergie initiale.
La période de l’oscillation peut être trouvée avec la relation ω2 = k

m
:

T1 =
2π

ω1

= 2π

√
m1

k
= 0.53 s (5)

1



b) La formule de cette vitesse a déja été trouvée dans la partie a) :

v =

√
kx2

i

m1 +m2

= 0.5 m/s. (6)

c) Le temps pendant lequel les masses sont séparées est équivalent à un quart d’une période
d’oscillation après le détachement. La distance, qui est parcourue par la masse m1 est
juste l’amplitude, pendant que la masse m2 continue avec une vitesse constante.

∆x = ∆x2 −∆x1 = v ·

T1

4
− A1 = 23.6 cm− 15 cm = 8.6 cm (7)

d) La force de rappelle du ressort est maximale lorsque l’élongation est maximale :

Fmax = kA1 = 15 N. (8)

Pour que le ressort ne se casse pas, la surface minimale de sa section sera donc :

S =
Fmax
σ

= 7.5 · 10−8 m2. (9)

On trouve finalement le diamètre minimal du ressort avec S = π
(
d
2

)2
:

d = 2

√
S

π
= 3.1 · 10−4 m = 0.31 mm. (10)

Exercice 2

Soit S le référentiel lié à la Terre, et S ′ le référentiel lié à la fusée (l′ = 100 m) qui voyage à une
vitesse v = 0.9cm/s par rapport à S. Soit l la longueur de la fusée par rapport au système de
la Terre.

a) Le moment auquel le signal arrive à l’avant de la fusée, selon le système de la fusée S ′

est :

t′avant =
l′

c
=

100 m

3 · 108 m/s
= 3.3 · 10−7 s (11)

b) Le moment auquel le signal arrive à l’avant de la fusée, selon le système de la Terre S
est :

tavant =
l

(c− v)
=

l′/γ

(c− v)
(12)

avec :

γ =
1

(1− v2

c2
)1/2

= 2.3 (13)

donc :

tavant =
100 m/2.3

0.1 x(3 · 108 m/s)
=

43.5 m

3 · 107 m/s
= 14.5 · 10−7 s (14)
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c) Le moment auquel le signal arrive à l’arrière de la fusée, selon le système de la fusée S ′

est :

t′arriere =
2l′

c
=

200 m

3 · 108 m/s
= 6.6 · 10−7 s (15)

et selon le système de la Terre S :

tarriere =
l

(c− v)
+

l

(c+ v)
=

l′/γ

(c− v)
+

l′/γ

(c+ v)
= 15.2 · 10−7 s (16)

d) La distance totale couverte par le signal lumineux, selon le système de la fusée S ′ est :

d′ = 2l′ = 200 m (17)

et selon le système de la Terre S :

d = ctarriere = 3 · 108 m/s x15.2 · 10−7 s = 456 m (18)

e) La quantité d’énergie épargnée équivaut à l’énergie cinétique de la masse des chaussettes
qui voyagent à la vitesse de la fusée v = 0.9c :

E = (γ − 1)mc2 = 1.3× 0.2 kg× (3 · 108 m/s)2 = 23.4 · 1012 kJ (19)

Exercice 3

L’énergie interne et l’entropie sont des variables d’état, c’est à dire que leur valeur ne dépend
pas du chemin parcouru lors de la transformation du gaz et leur variation sera identique pour
les trois transformations a), b) et c).
Pour un gaz parfait, on sait que :

∆UA→B = nCv∆T = nCv(TB − TA) (20)

∆SA→B =

B∫
A

δQ

T
=

B∫
A

dU + pdV

T
= ncv

B∫
A

dT

T
+ nR

B∫
A

dV

V
= ncv · ln(

TB
TA

) + nR · ln(
VB
VA

) (21)

où Cv = 3
2
R pour un gaz monoatomique,

n = masseAr
MAr

et VB
VA

= nR ·TB · pA
nR ·TA · pB

= TB · pA
TA · pB
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On obtient ainsi :

∆UA→B =
masseAr
MAr

3

2
R · (TB − TA) =

0.01

0.049
·

3

2
· 8.31 · (600− 300) = 763 J (22)

∆SA→B =

B∫
A

δQ

T
= ncv · ln(

TB
TA

) + nR · ln(
VB
VA

)

=
0.01

0.049
·

3

2
· 8.31 · ln(

600

300
) +

0.01

0.049
· 8.31 · ln(

600 · 300

300 · 100
)

= 4.8 J · K−1 (23)

Il nous faut maintenant calculer pour chaque processus le travail fourni ou reçu par le gaz
ainsi que la chaleur échangée avec le milieu extérieur puisque ces variables sont dépendantes du
chemin de la transformation thermodynamique. On se rappelle aussi le premier principe de la
thermodynamique : ∆U = Q−W .

a) A→ C : p constante
C → B : V constant

Comme V est constant pendant la transformation réversible C → B, on sait donc que
WC→B = 0. En conséquence, WA→C→B = WA→C .

Comme p est constante pendant A→ C :

WA→C = pA
C∫
A

dV = pA · (VC − VA) = pA · (VB − VA) = pA ·nR · (TB
pB
− TA

pA
).

On obtient alors :

WA→C→B = pA ·nR · (
TB
pB
− TA
pA

) = 300 ·

0.01

0.049
· 8.31 · (

600

100
− 300

300
) = 2544 J (24)

QA→C→B = ∆UA→B +WA→C→B = 763 + 2554 = 3307 J (25)

b) A→ D : V constante
D → B : p constant

Similairement à a), comme V est constant pendant la transformation réversible A→ D,
on sait que WA→D = 0. En conséquence, WA→D→B = WD→B.

Comme p est constante pendant D → B :

WD→B = pB
B∫
D

dV = pB(VB − VD) = pB(VB − VA) = pB ·nR · (TB
pB
− TA

pA
).
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On obtient alors :

WA→D→B = pB ·nR · (
TB
pB
− TA
pA

) = 100 ·

0.01

0.049
· 8.31 · (

600

100
− 300

300
) = 848 J (26)

QA→D→B = ∆UA→B +WA→D→B = 763 + 848 = 1611 J (27)

c) A→ E : T constante
E → B : p constant

On sait que TE = TA et pE = pB. On peut donc calculer VE à l’aide de l’équation des gaz
parfaits.

VE =
nR ·TE
pE

=
nR ·TA
pB

(28)

On calcule ensuite WA→E et WE→B

WA→E =

E∫
A

pdV = nRTA

E∫
A

dV

V
= nRTA · ln(

nR ·TA
pB

VA
) = nRTA · ln(

pA
pB

) (29)

WE→B = pB

B∫
E

dV = pB · (VB − VE) = pB · (VB −
nR ·TA
pB

) = nR · (TB − TA) (30)

On obtient donc :

WA→E→B = WA→E +WE→B = nRTA · ln(
pA
pB

) + nR · (TB − TA)

=
0.01

0.049
· 8.31 · 300 · ln(

300

100
) +

0.01

0.049
· 8.31 · (600− 300) = 1068 J (31)

et on en déduit QA→E→B :

QA→E→B = ∆UA→B +WA→E→B = 763 + 1068 = 1831 J (32)

d) L’entropie S et l’énergie libre F étant des variables d’état, la différence d’entropie et
d’énergie libre entre deux états ne dépend que des états eux-mêmes et non pas du chemin
parcouru pour passer de l’un à l’autre. On peut alors calculer la différence d’entropie
et d’énergie libre pour la transformation réversible A → E calculée en c). En effet la
différence entre A et E de ces deux variables d’état est la même que celle pour une
transformation irréversible entre ces mêmes états.

Calculons d’abord ∆S :
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∆SA→E =

E∫
A

δQ

TA
(33)

Or, comme T est constante au cours de la transformation A→ E, on a que :
∆UA→E = 0⇔ QA→E = WA→E. On peut alors utiliser les résultats trouvés en c) :

∆SA→E =
QA→E

TA
=
nRTA · ln( pA

pB
)

TA
=

0.01

0.049
· 8.31 · ln(

300

100
) = 1.9 J · K−1 (34)

La définition de l’énergie libre est :

F = U − TS (35)

Par dérivation on obtient :

dF = dU − TdS − SdT = TdS − pdV − Tds− SdT = −pdV − SdT (36)

Sachant que T est constante lors de A→ E, ∆F peut être facilement calculée en utilisant
les résultats trouvés en c) :

∆FA→E = −
E∫
A

pdV = −WA→E = −nRTA · ln(
pA
pB

) = − 0.01

0.049
· 8.31 · 300 · ln(

300

100
) = −559 J

(37)

e) Calculons d’abord la différence d’énergie moyenne d’une particule entre l’état A et l’état
B :

∆〈E〉particule =
∆UA→B
NA

=
cv · ∆T

NA

=
12.5

6.022 · 1023
· (TB − TA) = 6.2 · 10−21 J (38)

Maintenant calculons la différence d’énergie moyenne d’une particule en partant de sa
vitesse quadratique moyenne et en supposant que son énergie est purement cinétique (gaz
parfait) :

∆〈Ecin〉particule =
1

2
m · (〈vB〉2 − 〈vA〉2) =

1

2
m ·

8k∆T

π ·m

=
4k · (TB − TA)

π
= 1.76 · 10−23(TB − TA) = 5.3 · 10−21 J (39)

En fait lors du calcul de l’énergie cinétique moyenne, on utilise le carré de la vitesse
moyenne. Or, on sait que le carré de la moyenne n’est pas égal à la moyenne du carré
d’une valeur 1

N
· (
∑
Ni

vi)
2 6= 1

N

∑
Ni

vi
2, ce qui explique la différence trouvée entre ces deux

calculs. Afin de calculer correctement l’énergie cinétique moyenne des particules il faudrait
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connâıtre la moyenne du carré de la vitesse. En effet, la forme correcte de la différence
d’énergie cinétique moyenne est la suivante :

∆〈Ecin〉particule =
1

2
·m · (〈v2

B〉 − 〈v2
A〉)

Exercice 4

Avant de commencer les calculs, il est préférable de mettre les données de l’exercice dans les
unités du système international :
– TA = 243 K ; pA = 202’650 Pa
– pB = pA = 202’650 Pa (transformation isobare)
– TC = TA = 243 K ; pC = 101’325 Pa

De plus, on sait que c’est un gaz diatomique, ce qui veut dire que ν = 5 (il y a 5 degrés de
liberté), et donc Cv = ν

2
R = 5

2
R et γ = 2+ν

ν
= 7

5
. On rappelle aussi que R = 8.315 J/(mole K),

ainsi que la loi des gaz parfaits : pV = nRT .

a) On veut calculer les paramètres p, V et T pour chaque état du cycle.
Etat A : On donne pA = 202’650 Pa et TA = 243 K. Ainsi

VA =
nRTA
pA

= 0.01994 ≈ 0.02 m3 (40)

Etat C : On donne aussi la pression et la température : pC = 101’325 Pa et TC = 243 K.
Ainsi

VC =
nRTC
pC

= 0.03988 ≈ 0.04 m3 (41)

Etat B : Pour cet état, il faut utiliser le fait que la transformation de l’état B à l’état C
est une adiabate. En effet, on sait que pV γ = cst. Ainsi, on a

pCV
γ
C = pBV

γ
B ⇐⇒ VB =

(
pCV

γ
C

pB

)1/γ

= 0.0243 m3 (42)

On peut maintenant calculer la température en ce point du cycle :

TB =
pBVB
nR

= 296 K (43)

En résumé,

p [Pa] V [m3] T [K]
Etat A 202’650 0.02 243
Etat B 202’650 0.0243 296
Etat C 101’325 0.04 243
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b) Afin de calculer les différentes chaleurs échangées, on va rappeler le premier principe

∆U = Q−W = nCV ∆T (44)

=⇒ Q = W + nCV ∆T (45)

On peut maintenant calculer la chaleur pour chaque transformation du cycle :
Transformation A→B : C’est une isobare : p = cst. Ainsi,

QA→B =

∫ B

A

p dV + nCV ∆T

= pA(VB − VA) + nCV (TB − TA)

= 3073.2 J

Transformation B→C : C’est une adiabate : QB→C = 0. On peut aussi le calculer :

QB→C =

∫ C

B

p dV + nCV ∆T

=

∫ C

B

pBV
γ
B

V γ
dV + nCV (TC − TB)

= pBV
γ
B

∫ C

B

dV

V γ
+ nCV (TC − TB)

=
pBV

γ
B

1− γ
(
V 1−γ
C − V 1−γ

B

)
+ nCV (TC − TB)

= 0 J

Transformation C→A : C’est une isotherme : ∆T = 0 ⇒ ∆U = 0 ⇒ Q = W . Ainsi,

QC→A =

∫ A

C

p dV

=

∫ A

C

nRTA
V

dV

= nRTA ln

(
VA
VC

)
= −2802.8 J

c) Le rendement d’un cycle est défini commme le rapport entre le travail net du cycle et la
chaleur fournie au système (Q > 0), soit

η =

∑
W

Qreçue

(46)

On peut donc écrire

η =
WA→B +WB→C +WC→A

QA→B

=
pA(VB − VA) +

pBV
γ
B

1−γ

(
V 1−γ
C − V 1−γ

B

)
+QC→A

QA→B

=
871.4 + 2213− 2802.8

3073.2
= 9.16 %
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d) La variation d’entropie entre deux états s’écrit

∆S =

∫
δQ

T
(47)

Or, pendant la transformation C → A, la température reste constante. On peut donc
écrire

∆S =
1

TA

∫ A

C

pdV = nR ln

(
VA
VC

)
= −11.53 J/K (48)

e) Le diagramme P-V de ce cycle est présenté dans la figure (1).

Figure 1 – Diagramme P-V du cycle considéré

La transformation B → C est en 1/V γ, tandis que la transformation C → A est en 1/V ,
d’où la différence d’inclinaison.

f) Afin de représenter le cycle dans le diagramme T-S, il faut considérer la variation d’entro-
pie lors des transformations. Pour la transformation B → C, c’est très simple : ∆S = 0,
car δQ = 0 (adiabate). Elle sera représentée par une ligne verticale.

Pour la transformation C → A, on a ∆T = 0, donc δQ = δW < 0, ainsi ∆S < 0. Elle
sera représentée par une ligne horizontale.

Finalement, on s’apperçoit que TB > TC . On peut donc tracer le cycle.

Remarque : La courbe entre A et B est une exponentielle. En effet, on a que δQ =
nCpdT , avec Cp = γCv. On trouve donc

∆S =

∫ B

A

δQ

T
= nγCv︸ ︷︷ ︸

A, >0

ln

(
TB
TA

)
(49)

Que l’on peut ré-exprimer comme

TB = TA e
∆S/A (50)

qui est bien une exponentielle croissante.
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Figure 2 – Diagramme T-S du cycle considéré

Exercice 5

a) La condition pour pouvoir calculer la masse de cire nécessaire sans connâıtre la masse des
échantillons est d’avoir les échantillons à 37◦C au début des 24h.

b) On a deux matériaux (bôıte et couche isolante), on peut écrire la valeur de la puissance
traversant les deux matériaux :{

P
j/n
b = kb

db
A(Tint − T j/nmilieu)

P
j/n
c = kc

dc
A(T

j/n
milieu − T

j/n
ext )

(51)

où kb = 0.2W ·m−1
·K−1 est la conductivité thermique des parois de la bôıte, db = 2mm =

2 · 10−3m est l’épaisseur des parois de la bôıte, kc = 0.01W ·m−1
·K−1 est la conductivité
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thermique de la couche, dc = 10mm = 10−2m est l’épaisseur de la couche isolante,
A = 6`2 = 6m2 est la surface à travers laquelle on a la conduction (on peut prendre
la même pour la bôıte et la couche isolante), Tint = 37◦C = 310K est la température
dans la bôıte, T jext = 23◦C = 296K est la température extérieure pendant la journée,

T next = 16◦C = 289K est la température extérieure pendant la nuit et T
j/n
milieu est la

température à l’interface entre la boite et la couche.
En considérant que la puissance doit être la même P

j/n
b = P

j/n
c , on trouve :

T
j/n
milieu =

T
j/n
ext kcdb + Tintkbdc
kcdb + kbdc

⇒
{
T jmilieu ' 309.86K
T nmilieu ' 309.79K

En utilisant cette équation dans (51), on trouve :

P
j/n
b = P j/n

c =
Qj/n

∆t
= HeqA · (Tint − T j/next ) avec Heq =

kbkc
kcdb + kbdc

' 0.99W ·K−1

Dans les deux cas, on trouve : {
P j = 83.17W
P n = 124.75W

La chaleur totale donnée fournie par la cire pendant 24h doit être :

Qtot = P j
· ∆tj+P n

· ∆tn = 83.17W × (14 · 3600)s︸ ︷︷ ︸
'4.19 · 106J

+ 124.75W × (10 · 3600)s︸ ︷︷ ︸
'4.49 · 106J

' 8.68 · 106J

On peut donc calculer la masse nécessaire de cire :

Qtot = mc ·Lcfus ⇒ mc = Qtot/L
c
fus =

8.68 · 106J

2.05 · 105J/kg
' 42.36kg

où Lcfus = 205kJ/kg = 2.05 · 105J/kg est la chaleur latente de fusion de la cire.

c) On suppose que le balance énergétique entre la puissance de rayonnement d’entrée et
de sortie est dominée par la différence entre la rayonnement de l’intérieur à 37◦C et de
l’extérieur (23◦C pendant la journée et 16◦C pendant la nuit). Donc on trouve :

Φint = εσB ·A ·T 4
int

Φj
ext = εσB ·A · (T jext)

4

Φn
ext = εσB ·A · (T next)

4

⇒

 ∆Φj = Φint − Φj
ext = εσB ·A ·

[
T 4
int − (T jext)

4
]

=

∆Φn = Φint − Φn
ext = εσB ·A ·

[
T 4
int − (T next)

4
]

=

où ε est l’émissivité de la bôıte.
Si on néglige le transfert thermique par rayonnement, on suppose que ∆Φj � P j et
∆Φn � P n, c’est-à-dire :

ε� min

{
Pj

σB ·A ·

[
T 4
int − (T jext)

4
] , Pn

σB ·A ·

[
T 4
int − (T next)

4
]} ' 0.16

d) Pour réduire le valeur de l’émissivité de la bôıte, on peut, par exemple, la couvrir avec
des parois d’acier ou la peindre en blanc.
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