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Exercice 1

a) L’énergie potentielle initiale du ressort di a sa compression (x; = —20cm) est transfor-
mée completement en énergie cinétique a 'instant ou les deux masses arrivent ensemble
au point d’équilibre. La conservation de I'énergie mécanique entre ces deux points nous

donne : ) .
El,g = Ekxf = 5 (m1 + mg) 1)2, (1)
d’ol on peut trouver la vitesse au point d’équilibre :
ka2
v= g —i 2)
mi + mo

Pendant que la masse ms continue avec cette vitesse vy = v sans freinage, la masse m;
continue l'oscillation. L’énergie cinétique de cette masse est de nouveau transférée en
énergie potentielle au moment de 1’allongement maximal (amplitude A;) :

1 1
E1 = Ek‘A% = §m17)2
1 ka? 1
= —m i = il kx? (3)

2 ' my+my 2 my+my
Donc, 'amplitude de l'oscillation apres le détachement de ms est :

A = in = 15cm. (4)
mi1 + mo

L’amplitude change quand la masse msy perd contact. mq part avec une partie de I’énergie
initiale (sous forme cinétique) et m; oscille avec le reste de I’énergie initiale.

La période de I'oscillation peut étre trouvée avec la relation w? = % :

2T my
T'=— =2my/— =0.53 )
! w1 T k > <)



b) La formule de cette vitesse a déja été trouvée dans la partie a) :

ka?
vzw#zo.Sm/S.
my + mo

(6)

c¢) Le temps pendant lequel les masses sont séparées est équivalent a un quart d’une période
d’oscillation apres le détachement. La distance, qui est parcourue par la masse m; est

juste 'amplitude, pendant que la masse my continue avec une vitesse constante.

T
Azr = Azy — Axy :U-Zl — Ay =23.6cm — 15¢cm = 8.6 cm

d) La force de rappelle du ressort est maximale lorsque 1’élongation est maximale :

Fraw = kA = 15N,

Pour que le ressort ne se casse pas, la surface minimale de sa section sera donc :

F, mazx
o

S = =7.5-10"°m?.

On trouve finalement le diametre minimal du ressort avec S = 7 (g)2 :

/S
d=2¢/==3.1-10"*m = 0.31 mm.
T

Exercice 2

(7)

(8)

(9)

(10)

Soit S le référentiel lié a la Terre, et S’ le référentiel lié a la fusée (I’ = 100m) qui voyage a une
vitesse v = 0.9cm/s par rapport a S. Soit [ la longueur de la fusée par rapport au systeme de

la Terre.

a) Le moment auquel le signal arrive a 'avant de la fusée, selon le systeme de la fusée S’

est :
, I 100 m
t [

= =_——_=33.10"
avant = = = 37108 m /s i

(11)

b) Le moment auquel le signal arrive a 'avant de la fusée, selon le systeme de la Terre S

est :
! l'/y
tavant == =
(c—v) (c—v)
avec :
= 1 =23
Ta-me T
donc :

1 2. 43.
tavant = 0o m/ 5 = 3-5m =14.5- 10_78
0.1x(3-108m/s) 3-10"m/s

(12)

(13)



¢) Le moment auquel le signal arrive a l'arriere de la fusée, selon le systeme de la fusée S’
est :

, o _2_ 200m

. 2 T _66-1077 1
arriere C 3108m/s 66 O S (5)

et selon le systeme de la Terre S :

o { ) B U/~ U/~
tarriere = (c—v) + (c+v)  (c—w) + (c+v)

d) La distance totale couverte par le signal lumineux, selon le systeme de la fusée S’ est :

=152-10""s (16)

d =2I'=200m (17)
et selon le systeme de la Terre S :

d = Ctapiere = 3-10°m/sx15.2-10""s = 456 m (18)

e) La quantité d’énergie épargnée équivaut a I’énergie cinétique de la masse des chaussettes
qui voyagent a la vitesse de la fusée v = 0.9c¢ :

E=(y—1mc*=13x02kg x (3-10°m/s)* = 23.4-10"%*kJ (19)

Exercice 3

L’énergie interne et I’entropie sont des variables d’état, c’est a dire que leur valeur ne dépend
pas du chemin parcouru lors de la transformation du gaz et leur variation sera identique pour
les trois transformations a), b) et c).

Pour un gaz parfait, on sait que :

AUA_>B = TLCUAT = ’I’LCU(TB - TA) (20)
160 [dU+pdV ar v T %
+
ASAHB = /? :/Tp :ncv/?jLnR/V = NCy - ln(T—j)—l—nR hl(i) (21)
A A A A

ou C, = %R pour un gaz monoatomique,

n = masse A,

MA?"
et Yo — nB-Tp'pa _ Tp'pa
Va nR-Ta " pp Ta pB



On obtient ainsi :

masse 4, 3 0.01 3
AUy p = SR (Th — T — 22 2 931,600 — 300) = 763 ] 22
A=B o 2 (T = T4) 0.049 2 ( ) (22)
BéQ T vV
ASy,p = /T—ncv-ln(T—j)—FnR-ln(Vj)
A
0.0l 3 600 0.01 600 - 300
— . .2.831-In(—) + ——.831 In(———
0.049 2 (300 * 0009 (350 100/
= 48J.K! (23)

Il nous faut maintenant calculer pour chaque processus le travail fourni ou requ par le gaz
ainsi que la chaleur échangée avec le milieu extérieur puisque ces variables sont dépendantes du

chemin de la transformation thermodynamique. On se rappelle aussi le premier principe de la
thermodynamique : AU = Q — W.

a) A — C : p constante

C — B : V constant

Comme V est constant pendant la transformation réversible C' — B, on sait donc que
We_ g = 0. En conséquence, Wy o5 = Wa_c.

Comme p est constante pendant A — C':

c
Wase=pa[dV =pa-(Vo—=Va) =pa- (Ve = Va) =pa-nR- (G2 — 74).
A
On obtient alors :
Tg Ty 0.01 600 300
W =pg-nR-(———)=300- ——-831-(— — —) =2544J 24
Amoop =pasnlt (0 =) 0.049 (700 ~ 300’ (24)
Qascsp=AUpsp+Wycop =763 + 2554 = 3307 J (25)

A — D : V constante
D — B : p constant

Similairement & a), comme V' est constant pendant la transformation réversible A — D,
on sait que Ws_,p = 0. En conséquence, Wy_,p_g = Wp_,p.

Comme p est constante pendant D — B :

B
D

PB pa



On obtient alors :

Ty Ta 0.01 600 300
W —pponR- (22— TAY 2100 831 (o — ) — 848 2%
Aspop = pp el (20— ) 0.049 (700 ~ 300’ (26)
Ouispon = AUnsp + Waspop = 763 + 848 = 1611J (27)

A — E : T constante
E — B : p constant

On sait que Ty = T4 et pg = pp. On peut donc calculer Vg a l'aide de I’équation des gaz
parfaits.

T, T
PE PB

On calcule ensuite Wy_, g et Wg_n

B Vv nR-Txy
Wap = /pdV =nRTy /7 =nRTy - ln(‘p/—B) =nRTy - ln(p—A) (29)
4 i A PB
nk- TA

B
WEﬁszB/dvzpB«vB—vE)=pB-<VB— )=nR-(Ts—T4)  (30)
E

PB

On obtient donc :

Wisesp = Wasp+Weap=nRT,- hl( ) +nR- (T —Ta)

PB

0.01 300 0.01
= — 1- | —_— 1. — =1 1
0.019 -8.31-300- n(100)+0049 8.31- (600 — 300) 068J (31)

et on en déduit Qsg_.p :
Qaspsp=AUs g+ Wyp,p =763+ 1068 = 1831J (32)

L’entropie S et 'énergie libre F étant des variables d’état, la différence d’entropie et
d’énergie libre entre deux états ne dépend que des états eux-mémes et non pas du chemin
parcouru pour passer de I'un a l'autre. On peut alors calculer la différence d’entropie
et d’énergie libre pour la transformation réversible A — FE calculée en c). En effet la
différence entre A et E de ces deux variables d’état est la méme que celle pour une
transformation irréversible entre ces mémes états.

Calculons d’abord AS :



E

ASap = / 09 (33)

T
A
Or, comme T est constante au cours de la transformation A — FE, on a que :

AUpp =04 Qap = Wa,p. On peut alors utiliser les résultats trouvés en c) :

Qu.p NRT4-In(E) (01 300 .
ASp = = o’ _ 831 - In(>2)=19J- K 34
A=B = T T, 0.049 (700 (34)

La définition de I’énergie libre est :

F=U-TS (35)
Par dérivation on obtient :
dF =dU —TdS — SdT =TdS — pdV — Tds — SdT = —pdV — SdT (36)

Sachant que T est constante lors de A — E, AF peut étre facilement calculée en utilisant
les résultats trouvés en c) :

E
DA 0.01 300
AF = — dV = —-W. = -—nRTy In(—) =———-831-300- In(—) = —559J
A

(37)
Calculons d’abord la différence d’énergie moyenne d’une particule entre I'état A et ’état

B:

AUj.p ¢y -AT 12.5
A(E articule — - - :
(Eparticu N4 N, 6.022 - 1023

(Tg —Ta) =6.2-10721] (38)

Maintenant calculons la différence d’énergie moyenne d’une particule en partant de sa
vitesse quadratique moyenne et en supposant que son énergie est purement cinétique (gaz
parfait) :

1 1 SEAT
A<chin>pa1ﬂticule - §m ’ (<UB>2 - <UA>2) = ém —m
4k (T — Ta)

= —— 2 "2 176103 (Tg —T4) =5.3-1002]  (39)
7r
En fait lors du calcul de I’énergie cinétique moyenne, on utilise le carré de la vitesse
moyenne. Or, on sait que le carré de la moyenne n’est pas égal a la moyenne du carré
1

d’'une valeur + - (3" v;)? # + > v;%, ce qui explique la différence trouvée entre ces deux

calculs. Afin de calculer correctement 1’énergie cinétique moyenne des particules il faudrait

6



connaitre la moyenne du carré de la vitesse. En effet, la forme correcte de la différence
d’énergie cinétique moyenne est la suivante :

A<Ecm>pa7"ticule = B sme ((UJQB> - <U,24>)

Exercice 4

Avant de commencer les calculs, il est préférable de mettre les données de ’exercice dans les
unités du systeme international :

— Ty =243 K; py = 202650 Pa

— pp = pa = 202’650 Pa (transformation isobare)

— T =Ty =243 K; pe = 101’325 Pa

De plus, on sait que c¢’est un gaz diatomique, ce qui veut dire que v =5 (il y a 5 degrés de
liberté), et donc C, = ¥R = 2R et v = 2% = I. On rappelle aussi que R = 8.315 J/(mole K),
ainsi que la loi des gaz parfaits : pV = nRT.

a) On veut calculer les parametres p, V et T pour chaque état du cycle.
Etat A : On donne py = 202’650 Pa et Ty = 243 K. Ainsi

RT
Va= ”p 4 —0.01994 ~ 0.02 m? (40)
A

Etat C : On donne aussi la pression et la température : po = 101’325 Pa et Ty = 243 K.
Ainsi BT
Vo = —2C = 0.03988 ~ 0.04 m? (41)

Pc
Etat B : Pour cet état, il faut utiliser le fait que la transformation de I’état B a ’état C
est une adiabate. En effet, on sait que pV7 = c¢st. Ainsi, on a

pcVe
bB

1/~
pcVo =psVy < Vp= ( ) = 0.0243 m® (42)

On peut maintenant calculer la température en ce point du cycle :

V
Ty = 2275 _ 996 K (43)
n
En résumé,
p [Pa] V [m’] T [K]
Etat A 202’650 0.02 243
Etat B 202’650 0.0243 296
Etat C 1017325 0.04 243




b) Afin de calculer les différentes chaleurs échangées, on va rappeler le premier principe
AU =Q — W =nCyAT (44)

On peut maintenant calculer la chaleur pour chaque transformation du cycle :
Transformation A—B : C’est une isobare : p = cst. Ainsi,

B
Qasp = / pdV +nCyAT
A

= pA(VB — VA) + TLCV(TB — TA)
= 3073.2 J

Transformation B—C : C’est une adiabate : Q@p_,c = 0. On peut aussi le calculer :

c
Qpsc = / pdV +nCy AT
B

c 24

V,

= / A dV + nCV (TC — TB)
B V7

C
dVv
= vag/ — 4+ nC’V (TC — TB)

B V7
Va _ _
_ ]iB_i (VA = V™) +nCy (To — Tp)
= 01J
Transformation C—A : C’est une isotherme : AT =0 = AU =0 = @ = W. Ainsi,
A
Qs = [ pav
c
A
TLRTA
= dVv
L
Vy
= nRTyIn| —
n Al (VC>
= —2802.8 J

c¢) Le rendement d’un cycle est défini commme le rapport entre le travail net du cycle et la
chaleur fournie au systeme (Q > 0), soit

_xw
Qregue

n (46)

On peut donc écrire
Wasp+Waoo+Weoa
QA—>B
pa(Vp —Va) + plBTVE (VE" =V ) + Qosa
QA—>B
871.4 + 2213 — 2802.8
3073.2

’]7:

= 9.16%



d)

)

La variation d’entropie entre deux états s’écrit

AS = / ? (47)

Or, pendant la transformation C — A, la température reste constante. On peut donc
écrire

1 %
AS=— [ pdV =nRln (—“‘) = —11.53 J/K (48)
Ta Jo Ve
Le diagramme P-V de ce cycle est présenté dans la figure (1).
Pll
A B
P.=Ps »-
&
PC
v

VA VB VC

F1GURE 1 — Diagramme P-V du cycle considéré

La transformation B — C est en 1/V7, tandis que la transformation C' — A est en 1/V,
d’ou la différence d’inclinaison.

Afin de représenter le cycle dans le diagramme T-S, il faut considérer la variation d’entro-
pie lors des transformations. Pour la transformation B — C', c’est tres simple : AS = 0,
car Q) = 0 (adiabate). Elle sera représentée par une ligne verticale.

Pour la transformation C' — A, on a AT = 0, donc 6Q) = 6W < 0, ainsi AS < 0. Elle
sera représentée par une ligne horizontale.

Finalement, on s’appercoit que Ts > T¢. On peut donc tracer le cycle.

Remarque : La courbe entre A et B est une exponentielle. En effet, on a que 6Q =
nC,dT', avec C), = vC,. On trouve donc

B
0Q Tg
AS = — =nyCyIn [ = 49
[ 7 -mon(z) 1)
A, >0
Que 'on peut ré-exprimer comme
Tp = Ty er54 (50)

qui est bien une exponentielle croissante.



T B
¥
T,=T. i o =
> s
S, 5573,

FIGURE 2 — Diagramme T-S du cycle considéré

Exercice 5

échantillons + cire

H —— 2mm
10 mm

a) La condition pour pouvoir calculer la masse de cire nécessaire sans connaitre la masse des
échantillons est d’avoir les échantillons a 37°C" au début des 24h.

b) On a deux matériaux (boite et couche isolante), on peut écrire la valeur de la puissance
traversant les deux matériaux :

milieu

PCJ'/n _ Z_EA(TJ'/” _ TJ'/")

milieu ext

Jj/in _ k - mi/n
{Pb i 1)

ol ky = 0.2W -m~!. K1 est la conductivité thermique des parois de la boite, d, = 2mm =
2-1073m est I’épaisseur des parois de la boite, k. = 0.01W -m~1 . K~! est la conductivité

10



thermique de la couche, d. = 10mm = 1072m est I'épaisseur de la couche isolante,
A = 602 = 6m? est la surface & travers laquelle on a la conduction (on peut prendre
la méme pour la boite et la couche isolante), T;,; = 37°C' = 310K est la température
dans la boite, 77, = 23°C' = 296K est la température extérieure pendant la journée,
T, = 16°C = 289K est la température extérieure pendant la nuit et Tzl/lzeu est la
température a I'interface entre la boite et la couche. '

En considérant que la puissance doit étre la méme P} ™ = P on trouve :

i T kedy + Tothyd, N TV .~ 309.86K
mitiew = Tk + kyd, T i =~ 309.79K
En utilisant cette équation dans (51), on trouve :
. , j/n vk
pin— pim = @ g A (T, — T Heyy= o = 0.99W - K~
b c At ( t — text ) avec q k.dy + kyd..
Dans les deux cas, on trouve : '
P’ =83.17TW
P =124.75W

La chaleur totale donnée fournie par la cire pendant 24h doit étre :

Qior = P7- AP+ P" - At" = 83.17TW x (14-3600)s + 124.75W x (10-3600)s ~ 8.68 - 10°J

Vv Vv
~4.19-106J ~4.49-106J

On peut donc calculer la masse nécessaire de cire :

8.68-10°J

00 T L 4236k
2.05- 1051 /kg g

Qtot = Mg - ;us = Me= Qtot/LCus =

ou L, = 205kJ/kg = 2.05-10°J/kg est la chaleur latente de fusion de la cire.

On suppose que le balance énergétique entre la puissance de rayonnement d’entrée et
de sortie est dominée par la différence entre la rayonnement de l'intérieur a 37°C' et de
I'extérieur (23°C' pendant la journée et 16°C' pendant la nuit). Donc on trouve :

(bi‘nt =eop-A- Tﬁbt AP = Dt — cpixt =eop-A- Tmt (T xt)4 _
(I)fa:ct = €op- A- (Tgxt)4 = A
o =eop-A-(T2,)* AD" = &, — O =cop- A- |TE, — (T2 =

ou € est I’émissivité de la boite.
Si on néglige le transfert thermique par rayonnement, on suppose que A®’ < P7 et
ADP" <« P™, c’est-a-dire :

n P,
og-A- [T4 (Tj )4}703'14 [T4

int ext int

€ <K min{

o] } =010

Pour réduire le valeur de ’émissivité de la boite, on peut, par exemple, la couvrir avec
des parois d’acier ou la peindre en blanc.
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