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Exercice 1
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FIGURE 1 — Schéma de 'exercice 1
a) Les différentes forces exercées sur les deux masses sont représentées sur la figure 1. La

deuxieme loi de Newton appliquée a ces deux masses nous donne les équations suivantes :

N+Ti+M§g = 0 (1)
FE+To+mi = 0 (2)
ou F, = —kd, d est I’élongation du ressort et T3 = T, = T (fil inextensible et de masse

négligeable). En projetant ces équations sur les axes x et y, on trouve :

Nsinf —Tcos = 0 (3)
NcosO +Tsing —Mg = 0 (4)
-mg—kd+T = 0 (5)



Nous avons trois inconnues (N, T" et d) et trois équations, nous pouvons donc résoudre le
systeme. En sortant N de (3) et en I'insérant dans (4), on trouve :

y Q—I—Tsmﬁ = Mg (6)
sin
cos? 6 + sin% 6
T —mMm— = M
< sin 6 > g (7)
T
= M
sin 6 g (8)

Ce que l'on aurait aussi pu trouver en projetant I’équation (1) sur un axe parallele a ﬁ.
Finalement, en utilisant ce résultat dans (5) :

mg + kd = Mgsin 6 (9)

Ce qui donne pour I'élongation du ressort :

9.81
“2- (0.5 x 0.5 — 0.125) ~ 4.1 cm (10)

d:%(Msiné’—m): 30

On coupe le fil donc T, =T = 0. L’équation (2) devient :
E. +mg = ma (11)
Projetée selon y :
—ky(t) —mg = mij(t) (12)

ou y représente 1’élongation du ressort a l'instant ¢. En effectuant le changement de va-
riable z(t) = y(t) + 52 (£(t) = y(t), £(t) = 4(t)) , on trouve :

—kz(t) = mZ(t) (13)

qui est ’équation d'un oscillateur harmonique de pulsation wy = \/% dont la période est

0.125
= —2 =2 ~ 04 14
m/ T 30 S (14)

La solution générale de I’équation du mouvement (13) est :

donnée par :

2(t) = Acos(wot + ¢) (15)

Ce qui donne pour I’élongation du ressort :

y(t) = Acos(wot + @) — ”;g (16)

Les conditions initiales sont :
yt=0) = 0 (17)
yt=0) = d (18)



Ce qui nous permet d’identifier A et ¢ :

—Awpsin(¢p) =0 = ¢=0 (19)
ACOS(O)—%:C{ = A:d+% (20)
L’élongation du ressort a 'instant ¢ est finalement donnée par :
y(t) = (d + @> cos(wopt) — 9 (21)
k k
et la vitesse de la masse par :
(t) = —wq <d + %) sin(wot) (22)
Donc a t = 10s, la vitesse vaut :
gt =10s) = —wp (d + %) sin(wol0) (23)

B k mg\ . k
= /= (d+ 7) sin(y/--10) (24)
30 0.125 x 9.81 30
= /2 (0,041 + 222700 Y in(y ] o1 2
0.125 (0 M+ = )Sm( 01250 (25)

1.05 m/s (26)

Q

La masse M part du point A, a une hauteur h du plan horizontal, arrive au point B, en
bas du plan incliné, puis s’arréte au point C' apres avoir parcouru une distance L sur le
plan horizontal (voir fig. 1).

Le théoreme de I'énergie cinétique nous dit que la variation de 1’énergie cinétique entre le
point A et le point C' est égal a la somme des travaux des forces entre ces deux points.
Les seules forces qui travaillent entre A et C sont la force de pesanteur entre A et B et la
force de frottement entre B et C'. Comme la vitesse de la masse est nulle en A et en C,
la variation de I’énergie cinétique est également nulle.

AYE, = Wig +Wg° (27)
0 = Mgh—F;L (28)
uaN'L = Mgh (2)
paMgL = Mgh (30)
(31)

ou on a utilisé le fait que la force de frottement est égale au produit du coefficient de
frottement et de la force de soutien, que le coefficient de frottement dynamique doit étre
utilisé si le corps est en mouvement et qu’entre B et C, la norme de N’ est égal a Mg.

Donc
h 0.5

- -2 _9 32
w025 <M (32)



e) Dans ce cas, lorsque la masse arrive au point B elle est arrétée sur une distance D =
2mm par une force F , que I'on suppose constante, exercée par le mur contre la masse. De
nouveau on peut appliquer le théoreme de I’énergie cinétique entre le moment ot la masse
se trouve au point A et le moment ou elle est arrétée par le mur. La variation d’énergie
cinétique est nulle et les forces effectuant un travail sont la force de pesanteur entre A et
B et la force F sur une distance D. On a donc :

0=Mgh—FD (33)

et
Mgh
D

La contrainte de compression sur la masse vaut :

F= (34)

F Mgh Mgh 05x981x05
S DS  DI2  0.002 x 0.0052
~ 49.05-10° N/m? > 30-10° N/m? (36)

La masse se casse donc contre le mur.

Exercice 2

Soit S le référentiel lié au garage et S’ le référentiel lié a la trottinette, qui se déplace a une
vitesse v par rapport S. Etant donné que les longueurs propres du garage et de la trottinette
sont égales (2m), le probleme est symétrique. Afin de simplifier les calculs, on utilisera une seule
variable pour les dimensions propres (lp = 2m), et une autre pour les dimensions contractées
(l="2=12m)

a) Par rapport au référentiel S du garage, la longueur de la trottinette se contracte selon :

l 2
1= =l -5 (37)

D’ou l'on tire la vitesse de la trottinette :

1\’ g 1.2\ .
v=ocq/1— A =3-10%/1— - =2.4.10°m/s (38)
0

b) Par rapport au référentiel du garage, la trottinette parcourt une distance d = [ + [y
(longueur de la trottinette vue par le garage et longueur propre du garage) a une vitesse
v. Donc, le temps que la trottinette passe a 'intérieur du garage vaut :
d I+l 12+2

At == = =1.3-1078
==y Tazap (39)




c)

Par symétrie du probleme, le temps mesuré par 'enfant est le méme que celui mesuré par
un observateur situé dans le garage (voir point b), donc :

U+
n v

At = At

=1.3-10"%s (40)
Remarque : Ceci peut étre démontré en utilisant les transformations de Lorentz :

t' =t — —u (41)
= —yvt + vz (42)

et en définissant formellement les deux événements spatio-temporelles délimitant 1’interval
de temps recherché :

— A : “roue avant a la premiere porte”

— B : “roue arriere a la deuxieme porte”

En choisissant x(1leére porte) = 0, 2/(roue avant) = 0 et t(A) =0, on a : (ta,24) = (0,0)
et (tg,xp) = (At,ly). Par les transformations de Lorentz, on trouve :

(4, 4) = (0,0) (43)
/ / v
(t25) = (YAt = S5lo, =y0At +7y) (44)

En utilisant At = (I+1)/v et ¢ = v*/(1—(1/1ly)?), on trouve (tz, x'5) = ((I+1o) /v, —lp).
On a donc bien la méme solution.

Vu que la trottinette n’est pas coupée dans le référentiel du garage (sa longueur apparente
est plus petite que la longueur de I'entrée) et puisque la physique est la méme dans les
deux référentiels, elle ne doit pas étre coupée dans son propre référentiel, méme si la
contraction de l'entrée du garage dans ce référentiel semble indiquer le contraire. Ce
paradoxe apparent se résoud si 'on tient compte du fait que la simultanéité de ’arrivée
de la trottinette a la deuxieéme porte avec la fermeture de la premiere porte n’est vraie
que dans le référentiel du garage. Pour justifier completement cet argument, il faut passer
par les transformations de Lorentz. On définit deux événements :

— C : “roue avant a la deuxiéme porte”

— D : “la premiere porte se ferme”

Dans le référentiel du garage, ces événements s’écrivent : (to, z¢) = (lo/v,ly) et (tp,xp) =
(lp/v,0) (NB : tc = tp). Par les transformations de Lorentz, on trouve I’équivalent de ces
événements dans le référentiel de la trottinette :

v v
(toy o) = (ylo/v — Z_zlo’ —yvly/v + vlo) = (Yo /v — Z_Qlo’ 0) (45)
(th, xp) = (Ylo/v, —yvlo/v) = (Vo /v, —lo) (46)

En utilisant ¢ = v?/(1—(1/1y)?) et | = ly/, on trouve (t,, x) = (lo/(yv), 0). On constate
que ', < —ly. Des lors, dans le référentiel de la trottinette, la premiere porte se ferme
au-dela de la position de la roue arriere et la trottinette n’est pas coupée. Ceci est du a
la non-simultanéité de C et D dans S : ti; = lp/(yv) < vlo/v =t).

Remarque : le calcul de (t, ;) n’est pas indispensable pour répondre a la question.



Exercice 3

a)

La chaleur fournie par ’eau lorsqu’on la refroidit de 20°C a 0°C doit étre égale a la chaleur
nécessaire pour réchauffer la glace de —13°C a 0°C, puis la faire fondre totalement (on
veut la quantité minimale de glace).

meauceauATeau = mgngl + mglcglATgl (47)
meauceauATeau = My (Lgl + CglATgl)
meauceauATeau
Mg = 48
gt Lgl + CQZATQZ ( )

L’application numérique donne :

— 100 g 1 cal/g°C 20° C 2000 cal 93 (19)
9= 80 cal/g + 0.5 cal/g°C 13°C _ 86.5 cal/g  —~ ©

ou l'on a utilisé que 1dl d’eau est équivalent a une masse de 100 g.

En général, la variation d’entropie liée a un changement de température sans changement

de phase s’écrit :
T T
G 2 medT T
AS = / 00 _ e — meln <—2>, (50)
T1 T Tl T Tl

Pour un changement de phase a température constante, on a simplement :

m lL l
AS = 2%, 51
Tfusion ( )
La variation AS, pour la glace est donc :
Tfusion m lL l
AS, = 1 g9 52
gl = MgiCql H( Toy >+ Truoion (52)
o 273K 23 g 80 cal/g
AS,; =23g0.5cal/g’C 1
=238 05 cal/g’C In <260K) AT

ASy ~ 7.3 cal/°C

ou 'on a préalablement converti les températures en Kelvin. La variation d’entropie ASe,,
pour l'eau est quant a elle donnée par :

T:
ASeau = MeauCeau In < 27eau> (53)
1,eau
o 273K
ASeq =100 g 1.0 cal/g°C In <m)

ASeqy ~ —7.1 cal/°C
La variation d’entropie de 'univers est finalement donnée par la somme des deux :

ASuni = ASeau + ASy ~ 0.2 cal/°C > 0 (54)



c¢) L’application numérique dans I’équation (48) donne :

100 g 1 cal/g°C 0.5° C 50 cal
80 cal/g + 0.5 cal/g"C 0.05°C 80 cal/g

La variation AS, pour la glace est donc :

T rusi m lL 1
g 7 Tl,gl Tfusion

273K 0.625 g 80 cal
AS,; =0.625 g 0.5 cal/g°C In < ) g 80 cal/g

272.95K 273K
AS, = 0.1833 cal/°C

La variation d’entropie AS.,, pour 'eau est quant a elle :

T
ASeau = MeauCeau In <ﬂ>

273K
A =1 1. 1/¢°C 1
Seau 00 g 1.0 cal/g°C In (273.5K)
ASeq, = —0.1830 cal/°C

Et la variation d’entropie de I'univers est la somme des deux :

ASyni = ASequ + AS, = 0.0003 cal/°C > 0

d) — L’augmentation d’entropie est dominée par le changement de phase de la glace.

(56)

(57)

(58)

— Au point ¢), la masse de glace nécessaire est bien plus petite car 1'eau est déja proche

de 0°C. La variation d’entropie est donc tres faible.

— En terme d’équilibre thermodynamique, un systeme isolé va évoluer lorsque dS > 0 et
atteindre 1’équilibre lorsque dS = 0. Dans notre cas, la variation d’entropie de I'univers
est donc plus petite lorsque I'eau et la glace sont plus proches du point de fusion parce

que le systeme est ainsi plus proche de son état d’équilibre final.

— En terme de réversibilité, on constate que la variation d’entropie de I'univers est tres
proche de zéro au point c¢). Cela indique que la transformation est quasi réversible. On
peut le comprendre en se rappelant que 1’énergie échangée est la méme pour la glace
et pour 'eau et qu’ainsi, si la température des deux phases considérées est tres proche,

I’entropie perdue par 1'une est quasi égale a I’entropie gagnée par l'autre.

e) La quantité de la chaleur perdue par I'eau lors du refroidissement de 20°C a 0°C est

donnée par :

Q1 = MeauCeau AT ey = 100 g 1.0 cal/g”C 20°C = 2000 cal

(59)

La quantité de la chaleur nécessaire pour réchauffer la glace de -13°C au point de fusion

est donnée par :

Q2 = mgcaAT, =150 g 0.5 cal/g°C 13°C = 975 cal

(60)



La quantité de la chaleur pour fondre totalement la glace est donnée par :
Q3 = mg Ly = 150 g 80 cal/g = 12000 cal (61)

Comme ()7 < Q2 + @3, il est impossible que toute la glace fonde. Par contre, ()1 > Q)
implique que le mélange finale sera un mélange eau-glace a 0°C ol une partie de la glace
Mgl fondue @UTa fondu. Il s’agit donc de la calculer.

meauceauATeau = mgl,fandueLgl + mgngZATgl (62)
o meauceauATeau - mglcglATgl
Myl fondue = I

gl
L’application numérique donne :

2000 cal — 975 cal

~12.8 63
80 cal/g 8 (63)

Myl, fondue =

Le mélange final contient donc 100+ 12.8 = 112.8 g d’eau et 150 —12.8 = 137.2 g de glace.

Exercice 4

Commencons par rappeler quelques constantes et formules.

La loi des gaz parfaits : PV = nRT

Sur une adiabatique, on a : PV = cst

Sur une isotherme, on peut réécrire la loi des gaz parfaits : PV = nRT = cst

Sur une isobare, on peut réécrire la loi des gaz parfaits : % = %‘2 = cst

L’énergie interne d'un gaz parfait monoatomique vaut, en tout point du cycle : Uy, =
La chaleur spécifique molaire a volume constant vaut : C, = %R

Avec la constante des gaz parfaits : R = 8.314J/(mol K), n = 2, et pour un gaz monoato-

mique : ¥ = %

3nRT

2

a) Il s’agit d’un cycle moteur. En effet, le cycle est parcouru dans le sens horaire, de sorte
que le travail fournit par le gaz lors des transformations AB et BC (représenté par la
surface sous les courbes AB et BC) est plus élevé que le travail regu par le gaz lors des
transformations CD et DA.

b) Le diagramme P-V est représenté ci-dessous.



¢) On calcule la pression, la température et le volume du gaz aux états A, B, C et D :

e Etat A. La pression et le volume sont donnés :
pa = 12atm = 1215600Pa et V4, =3L=3-10"%m® (64)

La température en A est calculée grace a la loi des gaz parfaits :

V.
paVa=nRTy = Ty= pARA = 219.3K (65)
n
e Etat B. Le volume est donné :
Vp=12L=12-10"m? (66)

La transformation AB étant isotherme, la température en B est égale a la température

en A :
Ty =T, = 219.3K (67)

On utilise ensuite la loi des gaz parfaits pour déterminer la pression a 'état B :

RRTB

B

peVe=nRTp = pp= = 303900 Pa = 3 atm (68)




e Etat C'. La pression est donnée par :
pe = latm = 101300 Pa (69)

La transformation BC' étant adiabatique, les pressions et volumes en B et C' sont liés
par :
psVy = pcVe (70)

ol v est la constante adiabatique. Le gaz étant mono-atomique, ses molécules n’ont
que v = 3 degrés de liberté, i.e. les degrés de liberté liés a la translation. La constante
adiabatique vaut donc :

v+ 2 5
— == 71
y - 3 (71)
On obtient alors le volume a ’état C' :
DB 1/v
Vo =Vg (—) ~ 2321, =232-10"2m? (72)
bc

On détermine ensuite la température en C' avec la loi des gaz parfaits :

Vi
Ve =nRTy = Tp= pCRC ~ 141.3K (73)
n
e Etat D. La transformation C'D étant isobare, les pressions en C' et D sont identiques :
pp = pc = latm = 101300 Pa (74)

La transformation DA étant adiabatique, les pressions et volumes en D et A sont liés
par :

pa
Pp
Finalement, on détermine la température a 1’état D grace a la loi des gaz parfaits :

1/
poVy =pAVl = Vp=V, ( ) ~133L=13.3-10"%m? (75)

ppVp

pDVD =nRTp = Tp= ~ 81K (76)

d) Le rendement d’un moteur est le rapport du travail net fournit par le systeme lors du
cycle (i.e. la somme de tous les travaux effectués et recus) sur la chaleur totale recue par
le systeme lors du cycle (i.e. la somme des chaleurs @) positives) :

Wnet
"= (77)
Qregue
On doit donc déterminer les chaleurs et travaux échangés lors de chaque transformation
du cycle.
e Transformation AB. Le travail effectué par le systeme est donné :
Wap = 4000 (78)

10



La transformation AB étant isotherme, la variation d’énergie interne du gaz est nulle :

AUAB = nC’U ATAB =0 (79)
N——"

=0

On obtient alors la chaleur regue par le gaz en utilisant le premier principe de la
thermodynamique :

AUap =Qap —Wap = Qap=Wap=4000J (80)

Le signe de Q) 45 étant positif, cette chaleur est effectivement recue par le gaz.
Transformation BC'. La transformation étant adiabatique, le gaz ne recoit ni ne cede
aucune chaleur :

Qpc =0 (81)

On peut ensuite calculer le travail effectué par le gaz grace au premier principe :
AUpc =Qpc —Wpe = Wpe=—-AUpc = —nC,ATpc ~1945] (82)
On pourrait aussi intégrer le travail le long de BC grace a la relation pl/? = constante :
pV7 = constante = p(V) =ppgVaV " (83)

et on obtient

C C Vi C
Wge :/ p(V)dV :/ pVaV AV = ppVj { ] (84)

B B l=~v]p

Vlf'y R Ve St
Yo Vs ga5g (85)
L—n
Transformation C'D. On calcule le travail effectué par le gaz :
D
WCD = / pdV = Pc (VD — VC) ~ —1003J (86)
c

ou l'on a utilisé le fait que la pression est constante sur C'D. Remarquez que le signe
négatif de Wep indique que le travail est en fait effectué sur le gaz (pour réduire son
volume). Le premier principe donne ensuite la chaleur regue par le gaz :

AUCD = QCD — WC’D = QCD = nC’UATCD + WCD ~ —2507J (87)

Le signe négatif de Q¢ p indique que le gaz en fait cede cette chaleur. Elle ne fait donc
pas partie de la somme des chaleurs effectivement recues par le gaz.

Transformation DA. La transformation étant adiabatique, le gaz ne recoit ni ne cede
aucune chaleur :

Qpa =0 (88)

Le travail effectué par le gaz est obtenu par le premier principe :

AUDA = QDA — WDA = WDA = —AUDA = —nCUATDA ~ —3449.5] (89)

11
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On peut aussi intégrer le travail le long de DA comme pour la transformation BC'.
Remarquez que le signe négatif du travail indique qu’il est en fait effectué sur le gaz
pour le comprimer. Finalement, on calcule le rendement du cycle :

Whet = Wap + Wge + Wep +Wpa (90)
Qregue = QAB (91)
ne W
= p= Whet _ aB +Wee +Wep +Whpa ~ 0.37 (92)
Qregue QAB

Si I'isotherme AB est maintenant réversible, on peut la représenter sur le diagramme P-V.
Le travail correspondant est donc obtenu par I'intégration de pdV sur AB :

B B nWRT v
WaB.rew = / pdV = / DAV = nRTaIn [ <2 ) ~ 5056 (93)
’ A a4V Va

ou l'on a utilisé la loi des gaz parfaits et le fait que la température est constante le long de
AB. La variation de I’énergie interne du gaz est toujours nulle pour cette transformation :

AUvAB,rév = nOv AZ_YAB =0 (94)
——

=0

On utilise ensuite le premier principe pour déterminer la chaleur recue par le gaz :
A[]AB,rév == QAB,rév + WAB,rév = QAB,rév = WAB,réV =~ 5056 J (95)

Ces nouvelles valeurs Wyp rsv €t Q ap 16y €ntrent dans le calcul du rendement pour donner :

Wnet Jrév

Qregue,rév

_ Warew + Wee +Wep + Whpa

=~ 0.50 > Mirev 96
QAB,réV 1 ( )

Thévy =

On constate qu'un machine thermique opérant sur un cycle réversible est plus efficace
qu'une machine thermique opérant sur un cycle irréversible.

L’entropie, I'enthalpie et I’énergie libre sont des variables d’états. Elles sont donc indé-
pendantes de la transformation utilisée pour passer d’'un état a I'autre. Ceci dit, si I'on
doit intégrer des variables le long d'un chemin pour obtenir la variation d’une variable
d’état entre deux états, ce chemin doit étre réversible. Dans le cas d’une transformation
irréversible, on doit donc trouver une transformation réversible équivalente. Dans notre
cas, cette transformation doit mener le gaz de I'état A a I’état B par une transformation
réversible, représentable dans le diagramme P-V. Pour l'isotherme irréversible entre A
et B, on peut par exemple proposer le chemin A-D-C-B ou, de maniere équivalente et
plus simplement, l'isotherme réversible AB déja utilisée en e). Dans ce cas, la variation

d’entropie s’écrit :
0Q _ Qupuer

J
AS, :/ ~ 23.05 —, 97)
P Jipae T Ty K (

12



la variation d’enthalpie s’écrit :

B B
AHp = / AH — / (5Q + Vidp) (98)
A A
" nRT
= Q4B rév +/ ——dp (99)
A P
PB
= QaBrév + NRT4In <—) =0J (100)
Pa
et la variation d’énergie libre s’écrit :
B B
AFsp = /A dF = /A —pdV — S dYO’ = —Wap = —5056J (101)

Ces valeurs, calculées ici pour I'isotherme réversible, sont donc les mémes pour 'isotherme
irréversible puisque les états initiaux et finaux sont les mémes. L’utilisation du chemin
A-D-C-B, commun aux deux cycles (réversible et irréversible), aurait effectivement donné
les mémes résultats.

Remarque : dans le cas ou la transformation AB est irréversible, I’échange de chaleur
infinitésimal @) n’est pas défini et, pour 'entropie par exemple, on ne peut pas écrire :

B
ASugp :/ ds = 0@ _ Qap (102)

A AB,irrév T TA
Faux!

Exercice 5

a) Nous savons que la puissance thermique perdue par conduction d’un point chaud a un
point froid est définie par la formule suivante :
p=12Ls
l
ou k est la conductivité thermique du matériau séparant le point chaud du point froid,
AT la différence de température entre les deux points, [ I’épaisseur du matériau ou la
distance entre les deux points et S la surface de conduction. Lorsque la couche séparant
les points chaud et froid est composée de plusieurs matériaux, la puissance thermique
perdue est transmise a travers tous les matériaux et est donc la méme pour chaque couche
séparément (1'énergie est conservée). Cependant, il faut tenir compte des températures a
chaque jonction afin de calculer correctement les gradients de température dans chaque
matériau. Dans notre probleme, cela s’écrit (I'indice 1 indique la couche intérieure et
I'indice 2 la couche extérieure) :

=T
1

T —-T.
Iy

Pa =k S

chzkg S

13
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PCIZPCQZPC

Il subsiste deux inconnues dans le probleme : la puissance thermique P, que nous cherchons
et la température 7" au niveau de la jonction des deux couches de matériaux. En réécrivant
les équations afin de sortir 7", nous obtenons :

Pcll

T = — T;
Sk T
P.ly
T === T,
Sky
Et finalement par soustraction, nous obtenons :
P.l P.ly
-Ti+—+1T.=0
Sk TSk T
En sortant P., nous obtenons :
T, — T, 15—-3
P. = (kiky)——75=10.5-0.3 2-(25-234+5-23+5-25
ke o 03-0.05+05-0.02° ¢ +5:23+45-25)
= 4284 W.

Afin de calculer le temps nécessaire pour chauffer la caravane, il faut tenir compte :

1) De la chaleur nécessaire pour chauffer 'air dans la caravane. Cette chaleur est décrite
par la formule :

Qair - nCv AT

Le nombre de mole de gaz n peut étre facilement déterminé en utilisant la loi des gaz
parfaits (on suppose ici que l'air est un gaz parfait diatomique) : pV' = nRT. La caravane
étant un systeme fermé, on peut calculer n avec les valeurs initiales de p, V et T :

Vi

RT;

L’air étant considéré comme étant purement diatomique, le nombre de degrés de liberté
vaut v = 5 et (), est donné par C, = %. Finalement :
piViv

wr = BZAT
Qur =555

2) De I'énergie thermique perdue par conduction au cours du temps ¢ nécessaire au chauf-
fage de la caravane : Qpertes = P - .

3) De I'énergie qui est fournie a I'air pendant ce temps ¢. Il existe deux sources d’énergie
\ . . . 7

dans le probleme : le chauffage fournissant une puissance Pepgypr = 20 MJ/h = 236%)% W et

le ventilateur qui fournit indirectement P, = 300 W a I’air. Bien que la puissance indiquée

soit celle de la consommation électrique du ventilateur, cette puissance reste a l'intérieur
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de la caravane et contribue au chauffage de I'air (friction mécanique lors du brassage de
air et chaleur dégagée par le moteur).
En faisant le bilan des énergies fournies et consommées (ou perdues), on obtient :

vpi Vi
(Pchauff + Pv) t= Qair + Qpertes = §T AT + Pct
Finalement, il faudra un temps ¢ donné par :
vp; Vi -1
t = AT (Paou P, — P.
o7 (Pehauss + )
5-100-103-2.3-5-2.5 2107
= .10 300 — 4284)7!
2283 ( 3600 + )

= 162s = 2min42s

afin de chauffer la caravane de 10°C.

La puissance rayonnée par la surface S, d’un corps d’émissivité e et de température T;
dans un environnement a température 7, est donnée par :

P.=c-e-S(T;* - T,

Afin de simplifier le calcul, on choisit d’utiliser une température moyenne pour 7; = 15° C,
comme au point a). Cela enleve la difficulté provenant de I'intégrale sur le temps (on ne
connait pas la dépendance de la température en fonction du temps) dans la formule
précédente. Ainsi nous obtenons 'énergie rayonnée pendant le chauffage de la caravane
en multipliant cette puissance par le temps de chauffage ¢ :

Q- =P-t=c-e-S(T*=T* t
=57-107%-0.3-(2.3-54+2-2.3-2.5+2-5-2.5)(288* — 276*) - 162
= 143200J

Afin de comparer cette énergie avec ’énergie perdue par conduction, on calcule cette
derniere :

Q. =P.-t=4284-162
= 694000J

L’énergie rayonnée par la surface est environ 5 fois moins grande que celle perdue par
conduction. Nous faisons donc une erreur d’environ 20% dans notre approximation de
I’énergie perdue. Comme le temps de chauffage calculé est inversement proportionnel a
la puissance de chauffage effective (c’est a dire la puissance fournie moins les pertes), il
faut estimer 'impact d’une augmentation de 20% des pertes sur cette puissance effective.
Nous avons calculé que celle-ci vaut Pepquss + Py — P = 1572 W. Quant a l'erreur sur les
pertes, elle s’éleve a 20% de P. = 4284 W et vaut environ 850 W. L’erreur sur les pertes
correspond donc a environ 50% de la puissance effective et induit une erreur d’un facteur
2 sur le temps calculé. Cependant, on peut conclure que notre approximation des pertes
en ne tenant compte que de la conduction était suffisante pour nous renseigner sur 1’ordre
de grandeur du temps qu’il faut pour chauffer la caravane, qui est de quelques minutes.
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