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Exercice 1
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Figure 1 – Schéma de l’exercice 1

a) Les différentes forces exercées sur les deux masses sont représentées sur la figure 1. La
deuxième loi de Newton appliquée à ces deux masses nous donne les équations suivantes :

~N + ~T1 +M~g = ~0 (1)

~Fr + ~T2 +m~g = ~0 (2)

où Fr = −kd, d est l’élongation du ressort et T1 = T2 = T (fil inextensible et de masse
négligeable). En projetant ces équations sur les axes x et y, on trouve :

N sin θ − T cos θ = 0 (3)

N cos θ + T sin θ −Mg = 0 (4)

−mg − kd+ T = 0 (5)
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Nous avons trois inconnues (N , T et d) et trois équations, nous pouvons donc résoudre le
système. En sortant N de (3) et en l’insérant dans (4), on trouve :

T
cos2 θ

sin θ
+ T sin θ = Mg (6)

T

(
cos2 θ + sin2 θ

sin θ

)
= Mg (7)

T

sin θ
= Mg (8)

Ce que l’on aurait aussi pu trouver en projetant l’équation (1) sur un axe parallèle à ~T1.
Finalement, en utilisant ce résultat dans (5) :

mg + kd = Mg sin θ (9)

Ce qui donne pour l’élongation du ressort :

d =
g

k
(M sin θ −m) =

9.81

30
(0.5× 0.5− 0.125) ≈ 4.1 cm (10)

b) On coupe le fil donc T2 = T1 = 0. L’équation (2) devient :

~Fr +m~g = m~a (11)

Projetée selon y :
−ky(t)−mg = mÿ(t) (12)

où y représente l’élongation du ressort à l’instant t. En effectuant le changement de va-
riable z(t) = y(t) + mg

k
(ż(t) = ẏ(t), z̈(t) = ÿ(t)) , on trouve :

−kz(t) = mz̈(t) (13)

qui est l’équation d’un oscillateur harmonique de pulsation ω0 =
√

k
m

dont la période est

donnée par :

T =
2π

ω0

= 2π

√
m

k
= 2π

√
0.125

30
≈ 0.4 s (14)

c) La solution générale de l’équation du mouvement (13) est :

z(t) = A cos(ω0t+ φ) (15)

Ce qui donne pour l’élongation du ressort :

y(t) = A cos(ω0t+ φ)− mg

k
(16)

Les conditions initiales sont :

ẏ(t = 0) = 0 (17)

y(t = 0) = d (18)
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Ce qui nous permet d’identifier A et φ :

−Aω0 sin(φ) = 0 ⇒ φ = 0 (19)

A cos(0)− mg

k
= d ⇒ A = d+

mg

k
(20)

L’élongation du ressort à l’instant t est finalement donnée par :

y(t) =
(
d+

mg

k

)
cos(ω0t)−

mg

k
(21)

et la vitesse de la masse par :

ẏ(t) = −ω0

(
d+

mg

k

)
sin(ω0t) (22)

Donc à t = 10s, la vitesse vaut :

ẏ(t = 10s) = −ω0

(
d+

mg

k

)
sin(ω010) (23)

= −
√
k

m

(
d+

mg

k

)
sin(

√
k

m
10) (24)

= −
√

30

0.125

(
0.041 +

0.125× 9.81

30

)
sin(

√
30

0.125
10) (25)

≈ 1.05 m/s (26)

d) La masse M part du point A, à une hauteur h du plan horizontal, arrive au point B, en
bas du plan incliné, puis s’arrête au point C après avoir parcouru une distance L sur le
plan horizontal (voir fig. 1).

Le théorème de l’énergie cinétique nous dit que la variation de l’énergie cinétique entre le
point A et le point C est égal à la somme des travaux des forces entre ces deux points.
Les seules forces qui travaillent entre A et C sont la force de pesanteur entre A et B et la
force de frottement entre B et C. Comme la vitesse de la masse est nulle en A et en C,
la variation de l’énergie cinétique est également nulle.

∆ACEc = WAB
M~g +WBC

~Ff
(27)

0 = Mgh− FfL (28)

µdN
′L = Mgh (29)

µdMgL = Mgh (30)

(31)

où on a utilisé le fait que la force de frottement est égale au produit du coefficient de
frottement et de la force de soutien, que le coefficient de frottement dynamique doit être
utilisé si le corps est en mouvement et qu’entre B et C, la norme de N ′ est égal à Mg.
Donc

L =
h

µd
=

0.5

0.25
= 2 m (32)
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e) Dans ce cas, lorsque la masse arrive au point B elle est arrêtée sur une distance D =

2mm par une force ~F , que l’on suppose constante, exercée par le mur contre la masse. De
nouveau on peut appliquer le théorème de l’énergie cinétique entre le moment où la masse
se trouve au point A et le moment où elle est arrêtée par le mur. La variation d’énergie
cinétique est nulle et les forces effectuant un travail sont la force de pesanteur entre A et
B et la force ~F sur une distance D. On a donc :

0 = Mgh− FD (33)

et

F =
Mgh

D
(34)

La contrainte de compression sur la masse vaut :

σ =
F

S
=
Mgh

DS
=
Mgh

Dl2
=

0.5× 9.81× 0.5

0.002× 0.0052
(35)

≈ 49.05 · 106 N/m2 > 30 · 106 N/m2 (36)

La masse se casse donc contre le mur.

Exercice 2

Soit S le référentiel lié au garage et S ′ le référentiel lié à la trottinette, qui se déplace à une
vitesse v par rapport S. Etant donné que les longueurs propres du garage et de la trottinette
sont égales (2 m), le problème est symétrique. Afin de simplifier les calculs, on utilisera une seule
variable pour les dimensions propres (l0 = 2 m), et une autre pour les dimensions contractées
(l = l0

γ
= 1.2 m).

a) Par rapport au référentiel S du garage, la longueur de la trottinette se contracte selon :

l =
l0
γ

= l0

√
1− v2

c2
(37)

D’où l’on tire la vitesse de la trottinette :

v = c

√
1−

(
l

l0

)2

= 3 · 108

√
1−

(
1.2

2

)2

= 2.4.108 m/s (38)

b) Par rapport au référentiel du garage, la trottinette parcourt une distance d = l + l0
(longueur de la trottinette vue par le garage et longueur propre du garage) à une vitesse
v. Donc, le temps que la trottinette passe à l’intérieur du garage vaut :

∆t =
d

v
=
l + l0
v

=
1.2 + 2

2.4 · 108
= 1.3 · 10−8 s (39)
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c) Par symétrie du problème, le temps mesuré par l’enfant est le même que celui mesuré par
un observateur situé dans le garage (voir point b), donc :

∆t′ = ∆t =
l + l0
v

= 1.3 · 10−8 s (40)

Remarque : Ceci peut être démontré en utilisant les transformations de Lorentz :

t′ = γt− γv

c2
x (41)

x′ = −γvt+ γx (42)

et en définissant formellement les deux événements spatio-temporelles délimitant l’interval
de temps recherché :
– A : “roue avant à la première porte”
– B : “roue arrière à la deuxième porte”
En choisissant x(1ère porte) = 0, x′(roue avant) = 0 et t(A) = 0, on a : (tA, xA) = (0, 0)
et (tB, xB) = (∆t, l0). Par les transformations de Lorentz, on trouve :

(t′A, x
′
A) = (0, 0) (43)

(t′B, x
′
B) = (γ∆t− γv

c2
l0,−γv∆t+ γl0) (44)

En utilisant ∆t = (l+ l0)/v et c2 = v2/(1− (l/l0)2), on trouve (t′B, x
′
B) = ((l+ l0)/v,−l0).

On a donc bien la même solution.

d) Vu que la trottinette n’est pas coupée dans le référentiel du garage (sa longueur apparente
est plus petite que la longueur de l’entrée) et puisque la physique est la même dans les
deux référentiels, elle ne doit pas être coupée dans son propre référentiel, même si la
contraction de l’entrée du garage dans ce référentiel semble indiquer le contraire. Ce
paradoxe apparent se résoud si l’on tient compte du fait que la simultanéité de l’arrivée
de la trottinette à la deuxième porte avec la fermeture de la première porte n’est vraie
que dans le référentiel du garage. Pour justifier complètement cet argument, il faut passer
par les transformations de Lorentz. On définit deux événements :
– C : “roue avant à la deuxième porte”
– D : “la première porte se ferme”
Dans le référentiel du garage, ces événements s’écrivent : (tC , xC) = (l0/v, l0) et (tD, xD) =
(l0/v, 0) (NB : tC = tD). Par les transformations de Lorentz, on trouve l’équivalent de ces
événements dans le référentiel de la trottinette :

(t′C , x
′
C) = (γl0/v −

γv

c2
l0,−γvl0/v + γl0) = (γl0/v −

γv

c2
l0, 0) (45)

(t′D, x
′
D) = (γl0/v,−γvl0/v) = (γl0/v,−γl0) (46)

En utilisant c2 = v2/(1−(l/l0)2) et l = l0/γ, on trouve (t′C , x
′
C) = (l0/(γv), 0). On constate

que x′D < −l0. Dès lors, dans le référentiel de la trottinette, la première porte se ferme
au-delà de la position de la roue arrière et la trottinette n’est pas coupée. Ceci est dû à
la non-simultanéité de C et D dans S ′ : t′C = l0/(γv) < γl0/v = t′D.
Remarque : le calcul de (t′C , x

′
C) n’est pas indispensable pour répondre à la question.
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Exercice 3

a) La chaleur fournie par l’eau lorsqu’on la refroidit de 20◦C à 0◦C doit être égale à la chaleur
nécessaire pour réchauffer la glace de −13◦C à 0◦C, puis la faire fondre totalement (on
veut la quantité minimale de glace).

meauceau∆Teau = mglLgl +mglcgl∆Tgl (47)

meauceau∆Teau = mgl (Lgl + cgl∆Tgl)

mgl =
meauceau∆Teau
Lgl + cgl∆Tgl

(48)

L’application numérique donne :

mgl =
100 g 1 cal/g◦C 20◦ C

80 cal/g + 0.5 cal/g◦C 13◦C
=

2000 cal

86.5 cal/g
' 23 g (49)

où l’on a utilisé que 1 dl d’eau est équivalent à une masse de 100 g.

b) En général, la variation d’entropie liée à un changement de température sans changement
de phase s’écrit :

∆S =

∫ T2

T1

δQ

T
=

∫ T2

T1

mcdT

T
= mc ln

(
T2

T1

)
, (50)

Pour un changement de phase à température constante, on a simplement :

∆S =
mglLgl
Tfusion

. (51)

La variation ∆Sgl pour la glace est donc :

∆Sgl = mglcgl ln

(
Tfusion
T1,gl

)
+
mglLgl
Tfusion

(52)

∆Sgl = 23 g 0.5 cal/g◦C ln

(
273K

260K

)
+

23 g 80 cal/g

273K

∆Sgl ' 7.3 cal/◦C

où l’on a préalablement converti les températures en Kelvin. La variation d’entropie ∆Seau
pour l’eau est quant à elle donnée par :

∆Seau = meauceau ln

(
T2,eau

T1,eau

)
(53)

∆Seau = 100 g 1.0 cal/g◦C ln

(
273K

293K

)
∆Seau ' −7.1 cal/◦C

La variation d’entropie de l’univers est finalement donnée par la somme des deux :

∆Suni = ∆Seau + ∆Sgl ' 0.2 cal/◦C > 0 (54)
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c) L’application numérique dans l’équation (48) donne :

mgl =
100 g 1 cal/g◦C 0.5◦ C

80 cal/g + 0.5 cal/g◦C 0.05◦C
=

50 cal

80 cal/g
= 0.625 g (55)

La variation ∆Sgl pour la glace est donc :

∆Sgl = mglcgl ln

(
Tfusion
T1,gl

)
+
mglLgl
Tfusion

(56)

∆Sgl = 0.625 g 0.5 cal/g◦C ln

(
273K

272.95K

)
+

0.625 g 80 cal/g

273K

∆Sgl = 0.1833 cal/◦C

La variation d’entropie ∆Seau pour l’eau est quant à elle :

∆Seau = meauceau ln

(
T2,eau

T1,eau

)
(57)

∆Seau = 100 g 1.0 cal/g◦C ln

(
273K

273.5K

)
∆Seau = −0.1830 cal/◦C

Et la variation d’entropie de l’univers est la somme des deux :

∆Suni = ∆Seau + ∆Sgl = 0.0003 cal/◦C > 0 (58)

d) – L’augmentation d’entropie est dominée par le changement de phase de la glace.
– Au point c), la masse de glace nécessaire est bien plus petite car l’eau est déjà proche

de 0◦C. La variation d’entropie est donc très faible.
– En terme d’équilibre thermodynamique, un système isolé va évoluer lorsque dS > 0 et

atteindre l’équilibre lorsque dS = 0. Dans notre cas, la variation d’entropie de l’univers
est donc plus petite lorsque l’eau et la glace sont plus proches du point de fusion parce
que le système est ainsi plus proche de son état d’équilibre final.

– En terme de réversibilité, on constate que la variation d’entropie de l’univers est très
proche de zéro au point c). Cela indique que la transformation est quasi réversible. On
peut le comprendre en se rappelant que l’énergie échangée est la même pour la glace
et pour l’eau et qu’ainsi, si la température des deux phases considérées est très proche,
l’entropie perdue par l’une est quasi égale à l’entropie gagnée par l’autre.

e) La quantité de la chaleur perdue par l’eau lors du refroidissement de 20◦C à 0◦C est
donnée par :

Q1 = meauceau∆Teau = 100 g 1.0 cal/g◦C 20◦C = 2000 cal (59)

La quantité de la chaleur nécessaire pour réchauffer la glace de -13◦C au point de fusion
est donnée par :

Q2 = mglcgl∆Tgl = 150 g 0.5 cal/g◦C 13◦C = 975 cal (60)
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La quantité de la chaleur pour fondre totalement la glace est donnée par :

Q3 = mglLgl = 150 g 80 cal/g = 12000 cal (61)

Comme Q1 < Q2 + Q3, il est impossible que toute la glace fonde. Par contre, Q1 > Q2

implique que le mélange finale sera un mélange eau-glace à 0◦C où une partie de la glace
mgl,fondue aura fondu. Il s’agit donc de la calculer.

meauceau∆Teau = mgl,fondueLgl +mglcgl∆Tgl (62)

mgl,fondue =
meauceau∆Teau −mglcgl∆Tgl

Lgl

L’application numérique donne :

mgl,fondue =
2000 cal− 975 cal

80 cal/g
' 12.8 g (63)

Le mélange final contient donc 100+12.8 = 112.8 g d’eau et 150−12.8 = 137.2 g de glace.

Exercice 4

Commençons par rappeler quelques constantes et formules.
• La loi des gaz parfaits : PV = nRT
• Sur une adiabatique, on a : PV γ = cst
• Sur une isotherme, on peut réécrire la loi des gaz parfaits : PV = nRT = cst
• Sur une isobare, on peut réécrire la loi des gaz parfaits : V

T
= nR

P
= cst

• L’énergie interne d’un gaz parfait monoatomique vaut, en tout point du cycle : Uint = 3
2
nRT

• La chaleur spécifique molaire à volume constant vaut : Cv = 3
2
R

• Avec la constante des gaz parfaits : R = 8.314 J/(mol K), n = 2, et pour un gaz monoato-
mique : γ = 5

3

a) Il s’agit d’un cycle moteur. En effet, le cycle est parcouru dans le sens horaire, de sorte
que le travail fournit par le gaz lors des transformations AB et BC (représenté par la
surface sous les courbes AB et BC) est plus élevé que le travail reçu par le gaz lors des
transformations CD et DA.

b) Le diagramme P-V est représenté ci-dessous.
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c) On calcule la pression, la température et le volume du gaz aux états A, B, C et D :

• Etat A. La pression et le volume sont donnés :

pA = 12 atm = 1215600 Pa et VA = 3 L = 3 · 10−3 m3 (64)

La température en A est calculée grâce à la loi des gaz parfaits :

pAVA = nRTA ⇒ TA =
pAVA
nR

= 219.3 K (65)

• Etat B. Le volume est donné :

VB = 12 L = 12 · 10−3 m3 (66)

La transformation AB étant isotherme, la température en B est égale à la température
en A :

TB = TA = 219.3 K (67)

On utilise ensuite la loi des gaz parfaits pour déterminer la pression à l’état B :

pBVB = nRTB ⇒ pB =
nRTB
VB

= 303900 Pa = 3 atm (68)
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• Etat C. La pression est donnée par :

pC = 1 atm = 101300 Pa (69)

La transformation BC étant adiabatique, les pressions et volumes en B et C sont liés
par :

pBV
γ
B = pCV

γ
C (70)

où γ est la constante adiabatique. Le gaz étant mono-atomique, ses molécules n’ont
que ν = 3 degrés de liberté, i.e. les degrés de liberté liés à la translation. La constante
adiabatique vaut donc :

γ =
ν + 2

ν
=

5

3
(71)

On obtient alors le volume à l’état C :

VC = VB

(
pB
pC

)1/γ

' 23.2 L = 23.2 · 10−3 m3 (72)

On détermine ensuite la température en C avec la loi des gaz parfaits :

pCVC = nRTC ⇒ TC =
pCVC
nR

' 141.3 K (73)

• Etat D. La transformation CD étant isobare, les pressions en C et D sont identiques :

pD = pC = 1 atm = 101300 Pa (74)

La transformation DA étant adiabatique, les pressions et volumes en D et A sont liés
par :

pDV
γ
D = pAV

γ
A ⇒ VD = VA

(
pA
pD

)1/γ

' 13.3 L = 13.3 · 10−3 m3 (75)

Finalement, on détermine la température à l’état D grâce à la loi des gaz parfaits :

pDVD = nRTD ⇒ TD =
pDVD
nR

' 81 K (76)

d) Le rendement d’un moteur est le rapport du travail net fournit par le système lors du
cycle (i.e. la somme de tous les travaux effectués et reçus) sur la chaleur totale reçue par
le système lors du cycle (i.e. la somme des chaleurs Q positives) :

η =

∣∣∣∣ Wnet

Qreçue

∣∣∣∣ (77)

On doit donc déterminer les chaleurs et travaux échangés lors de chaque transformation
du cycle.
• Transformation AB. Le travail effectué par le système est donné :

WAB = 4000 J (78)
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La transformation AB étant isotherme, la variation d’énergie interne du gaz est nulle :

∆UAB = nCv ∆TAB︸ ︷︷ ︸
=0

= 0 (79)

On obtient alors la chaleur reçue par le gaz en utilisant le premier principe de la
thermodynamique :

∆UAB = QAB −WAB ⇒ QAB = WAB = 4000 J (80)

Le signe de QAB étant positif, cette chaleur est effectivement reçue par le gaz.
• Transformation BC. La transformation étant adiabatique, le gaz ne reçoit ni ne cède

aucune chaleur :
QBC = 0 (81)

On peut ensuite calculer le travail effectué par le gaz grâce au premier principe :

∆UBC = QBC −WBC ⇒ WBC = −∆UBC = −nCv∆TBC ' 1945 J (82)

On pourrait aussi intégrer le travail le long de BC grâce à la relation pV γ = constante :

pV γ = constante ⇒ p(V ) = pBV
γ
BV

−γ (83)

et on obtient

WBC =

∫ C

B

p(V )dV =

∫ C

B

pBV
γ
BV

−γdV = pBV
γ
B

[
V 1−γ

1− γ

]C
B

(84)

= pBV
γ
B

V 1−γ
C − V 1−γ

B

1− γ
' 1945 J (85)

• Transformation CD. On calcule le travail effectué par le gaz :

WCD =

∫ D

C

pdV = pC (VD − VC) ' −1003 J (86)

où l’on a utilisé le fait que la pression est constante sur CD. Remarquez que le signe
négatif de WCD indique que le travail est en fait effectué sur le gaz (pour réduire son
volume). Le premier principe donne ensuite la chaleur reçue par le gaz :

∆UCD = QCD −WCD ⇒ QCD = nCv∆TCD +WCD ' −2507 J (87)

Le signe négatif de QCD indique que le gaz en fait cède cette chaleur. Elle ne fait donc
pas partie de la somme des chaleurs effectivement reçues par le gaz.
• Transformation DA. La transformation étant adiabatique, le gaz ne reçoit ni ne cède

aucune chaleur :
QDA = 0 (88)

Le travail effectué par le gaz est obtenu par le premier principe :

∆UDA = QDA −WDA ⇒ WDA = −∆UDA = −nCv∆TDA ' −3449.5 J (89)
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On peut aussi intégrer le travail le long de DA comme pour la transformation BC.
Remarquez que le signe négatif du travail indique qu’il est en fait effectué sur le gaz
pour le comprimer. Finalement, on calcule le rendement du cycle :

Wnet = WAB +WBC +WCD +WDA (90)

Qreçue = QAB (91)

⇒ η =

∣∣∣∣ Wnet

Qreçue

∣∣∣∣ =

∣∣∣∣WAB +WBC +WCD +WDA

QAB

∣∣∣∣ ' 0.37 (92)

e) Si l’isotherme AB est maintenant réversible, on peut la représenter sur le diagramme P-V.
Le travail correspondant est donc obtenu par l’intégration de pdV sur AB :

WAB,rév =

∫ B

A

pdV =

∫ B

A

nRT

V
dV = nRTA ln

(
VB
VA

)
' 5056 J (93)

où l’on a utilisé la loi des gaz parfaits et le fait que la température est constante le long de
AB. La variation de l’énergie interne du gaz est toujours nulle pour cette transformation :

∆UAB,rév = nCv ∆TAB︸ ︷︷ ︸
=0

= 0 (94)

On utilise ensuite le premier principe pour déterminer la chaleur reçue par le gaz :

∆UAB,rév = QAB,rév +WAB,rév ⇒ QAB,rév = WAB,rév ' 5056 J (95)

Ces nouvelles valeurs WAB,rév et QAB,rév entrent dans le calcul du rendement pour donner :

ηrév =

∣∣∣∣ Wnet,rév

Qreçue,rév

∣∣∣∣ =

∣∣∣∣WAB,rév +WBC +WCD +WDA

QAB,rév

∣∣∣∣ ' 0.50 > ηirrév (96)

On constate qu’un machine thermique opérant sur un cycle réversible est plus efficace
qu’une machine thermique opérant sur un cycle irréversible.

f) L’entropie, l’enthalpie et l’énergie libre sont des variables d’états. Elles sont donc indé-
pendantes de la transformation utilisée pour passer d’un état à l’autre. Ceci dit, si l’on
doit intégrer des variables le long d’un chemin pour obtenir la variation d’une variable
d’état entre deux états, ce chemin doit être réversible. Dans le cas d’une transformation
irréversible, on doit donc trouver une transformation réversible équivalente. Dans notre
cas, cette transformation doit mener le gaz de l’état A à l’état B par une transformation
réversible, représentable dans le diagramme P-V. Pour l’isotherme irréversible entre A
et B, on peut par exemple proposer le chemin A-D-C-B ou, de manière équivalente et
plus simplement, l’isotherme réversible AB déjà utilisée en e). Dans ce cas, la variation
d’entropie s’écrit :

∆SAB =

∫
AB,rév

δQ

T
=
QAB,rév

TA
' 23.05

J

K
, (97)
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la variation d’enthalpie s’écrit :

∆HAB =

∫ B

A

dH =

∫ B

A

(δQ+ V dp) (98)

= QAB,rév +

∫ B

A

nRT

p
dp (99)

= QAB,rév + nRTA ln

(
pB
pA

)
= 0 J (100)

et la variation d’énergie libre s’écrit :

∆FAB =

∫ B

A

dF =

∫ B

A

(
−pdV − S dT︸︷︷︸

=0

)
= −WAB = −5056 J (101)

Ces valeurs, calculées ici pour l’isotherme réversible, sont donc les mêmes pour l’isotherme
irréversible puisque les états initiaux et finaux sont les mêmes. L’utilisation du chemin
A-D-C-B, commun aux deux cycles (réversible et irréversible), aurait effectivement donné
les mêmes résultats.
Remarque : dans le cas où la transformation AB est irréversible, l’échange de chaleur
infinitésimal δQ n’est pas défini et, pour l’entropie par exemple, on ne peut pas écrire :

∆SAB =

∫ B

A

dS =︸︷︷︸
Faux !

∫
AB,irrév

δQ

T
=
QAB

TA
(102)

Exercice 5

a) Nous savons que la puissance thermique perdue par conduction d’un point chaud à un
point froid est définie par la formule suivante :

Pc = k
∆T

l
S

où k est la conductivité thermique du matériau séparant le point chaud du point froid,
∆T la différence de température entre les deux points, l l’épaisseur du matériau ou la
distance entre les deux points et S la surface de conduction. Lorsque la couche séparant
les points chaud et froid est composée de plusieurs matériaux, la puissance thermique
perdue est transmise à travers tous les matériaux et est donc la même pour chaque couche
séparément (l’énergie est conservée). Cependant, il faut tenir compte des températures à
chaque jonction afin de calculer correctement les gradients de température dans chaque
matériau. Dans notre problème, cela s’écrit (l’indice 1 indique la couche intérieure et
l’indice 2 la couche extérieure) :

Pc1 = k1
Ti − T ′

l1
S

Pc2 = k2
T ′ − Te
l2

S

13



avec
Pc1 = Pc2 = Pc

Il subsiste deux inconnues dans le problème : la puissance thermique Pc que nous cherchons
et la température T ′ au niveau de la jonction des deux couches de matériaux. En réécrivant
les équations afin de sortir T ′, nous obtenons :

T ′ = −Pcl1
Sk1

+ Ti

T ′ =
Pcl2
Sk2

+ Te

Et finalement par soustraction, nous obtenons :

Pcl1
Sk1

− Ti +
Pcl2
Sk2

+ Te = 0

En sortant Pc, nous obtenons :

Pc = (k1k2)
Ti − Te

k2l1 + k1l2
S = 0.5 · 0.3

15− 3

0.3 · 0.05 + 0.5 · 0.02
2 · (2.5 · 2.3 + 5 · 2.3 + 5 · 2.5)

= 4284 W.

b) Afin de calculer le temps nécessaire pour chauffer la caravane, il faut tenir compte :

1) De la chaleur nécessaire pour chauffer l’air dans la caravane. Cette chaleur est décrite
par la formule :

Qair = nCv∆T

Le nombre de mole de gaz n peut être facilement déterminé en utilisant la loi des gaz
parfaits (on suppose ici que l’air est un gaz parfait diatomique) : pV = nRT . La caravane
étant un système fermé, on peut calculer n avec les valeurs initiales de p, V et T :

n =
piVi
RTi

L’air étant considéré comme étant purement diatomique, le nombre de degrés de liberté
vaut ν = 5 et Cv est donné par Cv = Rν

2
. Finalement :

Qair =
piVi
Ti

ν

2
∆T

2) De l’énergie thermique perdue par conduction au cours du temps t nécessaire au chauf-
fage de la caravane : Qpertes = Pc · t.

3) De l’énergie qui est fournie à l’air pendant ce temps t. Il existe deux sources d’énergie
dans le problème : le chauffage fournissant une puissance Pchauff = 20 MJ/h = 2 · 107

3600
W et

le ventilateur qui fournit indirectement Pv = 300 W à l’air. Bien que la puissance indiquée
soit celle de la consommation électrique du ventilateur, cette puissance reste à l’intérieur
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de la caravane et contribue au chauffage de l’air (friction mécanique lors du brassage de
l’air et chaleur dégagée par le moteur).

En faisant le bilan des énergies fournies et consommées (ou perdues), on obtient :

(Pchauff + Pv) · t = Qair +Qpertes =
νpiVi
2Ti

∆T + Pc · t

Finalement, il faudra un temps t donné par :

t =
νpiVi
2Ti

∆T (Pchauff + Pv − Pc)−1

=
5 · 100 · 103

· 2.3 · 5 · 2.5

2 · 283
· 10(

2 · 107

3600
+ 300− 4284)−1

= 162s = 2 min 42 s

afin de chauffer la caravane de 10° C.

c) La puissance rayonnée par la surface Sr d’un corps d’émissivité e et de température Ti
dans un environnement à température Te est donnée par :

Pr = σ · e ·Sr(Ti
4 − Te4)

Afin de simplifier le calcul, on choisit d’utiliser une température moyenne pour Ti = 15° C,
comme au point a). Cela enlève la difficulté provenant de l’intégrale sur le temps (on ne
connâıt pas la dépendance de la température en fonction du temps) dans la formule
précédente. Ainsi nous obtenons l’énergie rayonnée pendant le chauffage de la caravane
en multipliant cette puissance par le temps de chauffage t :

Qr = Pr · t = σ · e ·Sr(Ti
4 − Te4) · t

= 5.7 · 10−8
· 0.3 · (2.3 · 5 + 2 · 2.3 · 2.5 + 2 · 5 · 2.5)(2884 − 2764) · 162

= 143200J

Afin de comparer cette énergie avec l’énergie perdue par conduction, on calcule cette
dernière :

Qc = Pc · t = 4284 · 162

= 694000J

L’énergie rayonnée par la surface est environ 5 fois moins grande que celle perdue par
conduction. Nous faisons donc une erreur d’environ 20% dans notre approximation de
l’énergie perdue. Comme le temps de chauffage calculé est inversement proportionnel à
la puissance de chauffage effective (c’est à dire la puissance fournie moins les pertes), il
faut estimer l’impact d’une augmentation de 20% des pertes sur cette puissance effective.
Nous avons calculé que celle-ci vaut Pchauff +Pv −Pc = 1572 W. Quant à l’erreur sur les
pertes, elle s’élève à 20% de Pc = 4284 W et vaut environ 850 W. L’erreur sur les pertes
correspond donc à environ 50% de la puissance effective et induit une erreur d’un facteur
2 sur le temps calculé. Cependant, on peut conclure que notre approximation des pertes
en ne tenant compte que de la conduction était suffisante pour nous renseigner sur l’ordre
de grandeur du temps qu’il faut pour chauffer la caravane, qui est de quelques minutes.
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