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Test de mi-semestre

Exercice 1

Deux trains japonais Shinkansen, A et B, circulent entre Tokyo et Kyoto dans des sens opposés.
Ces nouveaux modèles de train sont munis de batteries électriques qui leur permettent de voyager
à des vitesses relativistes : v = 0.8c mesurée dans le référentiel de la Terre (avec c la vitesse de la
lumière). Les trains A et B ont une longueur au repos de L0 = 300 m et une masse de 50 tonnes.
Un touriste, assis à l’arrière du train A, a remarqué qu’il voyageait dans le mauvais sens : il décide
alors de tenter sa chance et de sauter dans le train B. Pour cela, il saute dans le train B, dans une
direction perpendiculaire à la direction des rails, au moment où l’avant du train A est parfaitement
aligné avec l’arrière du train B dans son référentiel. On néglige la distance perpendiculaire entre les
deux trains. Un autre passager du train B regarde alors par la fenêtre en direction du train A.

a) Quelle est la vitesse u′ du train B dans le référentiel du train A ?
� A. u′ = 0.
� B. u′ ' +0.97c.
� C. u′ ' −0.97c.
� B. u′ = −1.6c.

b) Laquelle de ces propositions s’applique de la situation considérée :
� A. Un intervalle temporel entre deux événements mesurés dans le référentiel du train
A est le même que mesurés dans le référentiel du train B.

� B. Un intervalle spatial entre deux événements mesurés dans le référentiel du train A
est le même que mesurés dans le référentiel du train B.

� C. La simultanéité entre deux événements mesurés dans le référentiel du train B est
affectée par les effets relativistes.

� D. Les effets relativistes ne concernent que les événements liés au référentiel du train
B.

c) On considère les deux événements suivants :
— ε1 : ”Avant du train A aligné avec arrière du train B dans le référentiel de A”.
— ε2 : ”Passager de A saute vers B”.
Dans quel ordre le passager du train B voit-il ces deux événements :
� A. ε1 et ε2 sont silmutanés.
� B. ε2 avant ε1.
� C. ε1 avant ε2.
� D. ε1 et ε2 sont simultanés puisque le voyageur est au repos dans le référentiel du train
B.

d) Est-ce que le touriste du train A arrive à sauter dans le train B ?
� A. Oui, car la longueur du train B dans le référentiel de A est plus longue que dans

son propre référentiel.
� B. Oui, car la longueur du train B dans le référentiel de A est plus courte que dans

son propre référentiel.
� C. Non, car la longueur du train B dans le référentiel de A est plus longue que dans

son propre référentiel.
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� D. Non, car la longueur du train B dans le référentiel de A est plus courte que dans
son propre référentiel.

e) Une fois arrivé à Tokyo, le train A freine. Il est muni d’un système capable de récupérer
45% de l’énergie cinétique perdue lors de son freinage pour recharger ses batteries. Quelle est
l’énergie emmagasinée lors du freinage du train jusqu’à son arrêt complet dans le référentiel
terrestre ?
� A. ' 3.12× 1021 J.
� B. ' 1.35× 1021 J.
� C. ' 8.09× 1021 J.
� D. ' 6.48× 1021 J.

Corrigé

a) La réponse C. est correcte. Pour trouver la vitesse u′ du train B dans le référentiel du train
A, on utilise la transformation des vitesses

u′ =
u− v

1− uv

c2

, (1)

avec u la vitesse du train B par rapport à la Terre et v la vitesse du train A par rapport à la
Terre. Avec u = −0.8c et v = 0.8c, on trouve

u′ =
−0.8c− 0.8c

1 +
0.82c2

c2

= −0.97c. (2)

b) La proposition C. est correcte. En effet, les intervalles spatiaux temporels (∆x,∆t) entre
deux événements dans le référential du train A, dénoté par RA, se transforment en (∆x′,∆t′)
dans le référential du train B, dénoté par RB, selon les transformations de Lorentz dans le
référential du train B, dénoté par RB.

c) On veut déterminer l’ordre des événements, définit par :
— ε1 : ”Avant du train A aligné avec arrière du train B dans le référentiel de A”.
— ε2 : ”Passager de A saute vers B”.
dans RB. Pour cela, on repère ε1 et ε2 par les coordonnées (x1, t1) et (x2, t2) dans RA (et
(x′1, t

′
1) et (x′2, t

′
2) dans RB). En prenant comme origine l’avant du train A et le sens positif

de la coordinée x dans le sens du train A, on a que ∆x = x2− x1 = −L0, et ∆t = t2− t1 = 0.
On peut alors appliquer les transformations de Lorentz pour trouver ∆t′ = t′2 − t′1 tel que

c∆t′ = γ(u′) (c∆t− β∆x) , (3)

où γ(u′) = 1/
√

1− β2, et β = −|u′|/c, car le train B se rapproche A avec une vitesse
u′ = −|u′|ex. On a donc que

c∆t′ = −γ(u′)β∆x = −γ(u′)
|u′|
c
L0 < 0⇒ t′1 > t′2. (4)

Dans ce cas, pour le passager dans le train B, le touriste saute avant que l’arrière du train B
soit au niveau de l’avant du train de A. On en déduit que c’est la réponse B. qui est correcte.
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d) Pour savoir si le touriste arrive à sauter dans le train B, il faut se demander où se trouve
l’avant du train B dans le référentiel RA, c’est-à-dire la longueur du train B mesurée dans le
référentiel de A. Pour cela, on définit :
— ε3 : position de l’avant de B au moment de ε1.
De plus, on introduit ses coordonnées spatio-temporelles par (x3, t3) et (x′3, t

′
3) dans RA et

RB, respectivement. Comme L0 est une longueur propre du train de B dans RB, on a doit
que ∆x′ := x′3− x′1 = −L0, tandis que ∆t := t3− t1 = 0 dans RA. On peut donc appliquer les
transformation de Lorentz, c’est-à-dire

∆x′ = γ(u′) (∆x− βc∆t) . (5)

On obtient que la longueur

∆x =
∆x′

γ(u′)
, (6)

ce qui est la contraction des longueurs. On en déduit donc que le touriste va sauter dans le
vide, car l’avant de B se trouve en −L0/γ(u′) avec γ(u′) > 1. Par application numérique,
avec γ(u′) = 1/

√
1− (0.97)2 ' 4.11, on trouve que la longueur de B perçue par A est de

L0/4.11 ' 72.9 m. C’est donc la réponse D. qui est correcte.
e) On suppose que le système est capable de convertir 45% (η = 0.45) de l’énergie cinétique

perdue par le train lors du freinage. On peut donc écrire que l’énergie emmagasinée dans la
batterie, U , est

U = ηK, (7)

où K est la variation cinétique. Comme la vitesse des trains est relativiste, v = 0.8c (on prend
ici la vitesse du train par rapport à la Terre), l’énergie cinétique est donc donnée par

K = (γ(v)− 1)mc2. (8)

Par application numérique, on trouve que K = 3 × 1021 J, et donc U = 1.35 × 1021 J. C’est
la réponse B. qui est correcte.
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Exercice 2

Un recipient cylindrique parfaitement isolé est fermé par un piston de masse négligeable, aussi par-
faitement isolé, de section A = 0.03 m2 qui peut coulisser verticalement sans frottement. Le recipient
contient 10 moles de gaz parfait, monoatomique. Le système est initialement à l’équilibre mécanique
avec un poids de 400 kg sur le piston. La pression externe est égale à p0 = 105 Pa et le gaz est à la
température de 20◦C.
Indications : Constante gaz parfaits : R = 8.3 JK−1mol−1 ; accélération de gravité g = 9.8 ms−2.

a) Quelle est le volume occupé par le gaz dans la situation initiale ?
� A. V ' 0.017 m3

� B. V ' 0.243 m3

� C. V ' 0.0072 m3

� D. V ' 0.1 m3

Soudaiment on enlève le poids créant ainsi une situation hors équilibre. Le piston se déplace rapide-
ment jusqu’à atteindre un nouvel équilibre mécanique.

b) Quelle affirmation est vrai en considerant le systeme gaz ?
� A. Le gaz fait un travail positif et il se chauffe car la transformation est adiabatique.
� B. Le gaz fait un travail positif et il se refroidit car la transformation est adiabatique.
� C. Le gaz fait un travail positif et il se chauffe car la transformation est à pression

constante.
� D. Le gaz fait un travail positif et il se refroidit car la transformation est à pression

constante.
c) Exprimez le volume final final Vfinal atteint en fonction du volume initial Vinitial ?

� A. Vfinal ' 0.5Vinitial.
� B. Vfinal ' 1.66Vinitial.
� C. Vfinal ' 1.79Vinitial.
� D. Vfinal ' 9.56Vinitial.

Corrigé

a) Réponse D. Pour cette condition initiale, il faut considérer le système à l’équilibre mécanique :
la pression à l’intérieur du cylindre est égale à la pression atmosphérique p0 à laquelle s’ajoute
la pression associée à la force de pesanteur du poids de masse m sur le piston :

pgaz = pi = p0 + ppoids = p0 +
mg

A
(9)

La loi des gaz parfait s’applique toujours

piVi = nRTi ⇒
(
p0 +

mg

A

)
Vi = nRTi ⇒ Vi =

nRTi

p0 + mg
A

.

Application numérique :

Vi =
10× 8.3× 293

105 + 400× 9.8
0.03

' 0.1 m3.

b) Réponse B.. On enlève le poids. La pression exercée sur le gaz diminue. Le piston se déplace
jusqu’à un nouvel équilibre thermique qui correspond à un plus grand volume occupé par le
gaz. Le travail est donc positif (W > 0 car ∆V > 0). De plus,

∆U = ncV ∆T = Q︸︷︷︸
=0

− W︸︷︷︸
>0

< 0,
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puisque la transformation est adiabatique. Donc ∆T < 0 donc le gaz se refroidit.
c) Réponse B.. Une fois l’équilibre mécanique final atteint, on peut utiliser l’équation des gaz

parfaits : pfVf = nRTf avec maintenant pf = p0 puisqu’il n’y a plus le poids.
Mais comme la transformation est rapide, elle n’est pas réversible donc on ne peut pas utiliser
pV γ = const. ! C’est bien là le piège de cet exercice. Par contre (ouf !), le premier principe de
la thermodynamique reste toujours valable :

∆U = ncV (Tf−Ti) = −W = −p0(Vf−Vi) ⇒ ncV

(
pfVf
nR
− piVi
nRTi

)
= −p0(Vf−Vi). (10)

La seule pression exercée sur le gaz est la pression atmosphérique p0 à travers le piston.

⇒ ncV
nR

(p0Vf − piVi) = −p0(Vf − Vi) ⇒ p0Vf − piV i = (γ − 1)p0(Vi − Vf )

⇒ Vf −
pi
p0

Vi = (γ − 1)(Vi − Vf )⇒ Vf (1 + γ − 1) = Vi

(
γ − 1 +

pi
p0

)
.

Donc

Vf =
Vi
γ

(
γ − 1 +

pi
p0

)
=
Vi
γ

(
γ +

mg

Ap0

)
= Vi

(
1 +

mg

γAp0

)
,

où on a remarqué que
pi
p0

=
p0 + mg

A

p0

= 1 +
mg

Ap0

.

Le gaz est monoatomique (ν = 3) donc γ = ν+2
ν
' 1.66.

Application numérique :

Vf = Vi

(
1 +

400× 9.8

1.66× 0.03× 105

)
' 1.79× Vi m3.
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Exercice 3

Un cube de nickel de 1 kg à 1000 ◦C est plongé dans un récipient isolé contenant 2 kg d’eau à 90
◦C. Une fois le cube dans le récipient, on ferme le couvercle de manière hermétique.
Indications : Chaleur spécifique du nickel : cn = 440 J kg−1 K−1 ; Chaleur spécifique de l’eau :
ce = 4186 J kg−1 K−1 ; Chaleur latente d’évaporation de l’eau : Le = 2256 kJ kg−1 ; Chaleur spécifique
de la vapeur cv = 2077 J kg−1 K−1.

a) Quelle est la température finale du système une fois l’equilibre atteint ?
� A. La température finale est environ 95 ◦C.
� B. La température finale est 100 ◦C.
� C. La température finale est environ 135 ◦C.
� D. La température finale est supérieure à 100 ◦C, mais on peut pas déterminer son

valeur.
b) Laquelle des déclaration suivante est correcte ?

� A. Il n’y a pas d’évaporation.
� B. ' 138 g d’eau sont évaporés.
� C. ' 1123 g d’eau sont évaporés.
� D. Toute l’eau s’est évaporée

c) Quelle est le nombre minimal de cubes de 1kg de nickel à la température de 1000 ◦C qu’il faut
plonger dans l’eau pour évaporer toute l’eau.
� A. 1 cube de nickel est suffisant.
� B. 5 cubes de nickel sont suffisants.
� C. 12 cubes de nickel sont suffisants.
� D. 18 cubes de nickel sont suffisants.

d) On plonge le nombre de cubes trouvé à la question précédente dans l’eau et on attend qu’un
nouvel équilibre thermique soit atteint. Quelle est la température finale du système ?
� A. La température finale du système est 100 ◦C.
� B. La température finale du système est envireon 135 ◦C.
� C. La température finale est plus grand que 100 ◦C, mais on peut pas déterminer son

valeur.
� D. La température finale du système est environ 117 ◦C.

Corrigé

a) Il y a trois possibilité : (1) La température finale à l’équilibre est supérieure à 100 ◦C et toute
l’eau est évaporée, (2) la température finale est Tf = 100 ◦C et on a un mélange entre eau
liquide et vapeur d’eau, (3) la température finale est plus petite de 100 ◦et toute l’eau est dans
l’état liquide. On fait l’hypothèse que la température d’équilibre du système est Tf = 100◦C,
hypothèse (2). La chaleur cédée par le cube, |Qn| = |mncn(Tf −Tn)| = 396 kJ, est plus grande
que la chaleur nécessaire pour chauffer l’eau jusqu’à 100 ◦C, |Qe| = |mece(Tf −Te)| = 83.7 kJ.
Il y a donc de l’eau qui s’évapore. Cependant, la chaleur nécessaire pour chauffer l’eau et la
faire évaporer complètement, |Qe|+meLe = 4596 kJ est beaucoup plus grande que la chaleur
cédée par le cube. On a donc

|Qe| < |Qn| < |Qe|+meLe . (11)

La température d’équilibre du système est Tf = 100◦C et il y a une petite quantité d’eau qui
s’évapore. La réponse correcte est B..
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b) On peut calculer la quantité d’eau évaporée en utilisant
∑
Q = Qn +Qe +mvLe = 0, où mv

est la masse d’eau évaporée. On obtient

mv =
mece(Te − Tf ) +mncn(Tn − Tf )

Le
' 138 g . (12)

La réponse correcte est B..
c) On utilise toujours

∑
Q = Qn+Qe+meLe = 0, où on a remplacé mv par me parce que toute la

quantité d’eau est évaporée. La chaleur cédée par les cubes de nickel est Qn = Nmncn(Tf−Tn),
où N est le nombre de cubes. On obtient

Nmncn(Tf − Tn) +mece(Tf − Te) +meLe = 0 , (13)

qui donne

N =
mece(Tf − Te) +meLe

mncn(Tn − Tf )
= 11.6 . (14)

Le nombre de cubes minimal nécessaire pour faire évaporer toute la quantité d’eau est donc
N = 12 (réponse C.).

d) Une fois que toute l’eau est évaporée, il ne reste que de la vapeur d’eau. La chaleur restante
après avoir évaporée toute l’eau est cédée à la vapeur et le système atteint une nouvelle
température finale T ′f . En utilisant l’équation

∑
Q = 0, on obtient

Nmncn(T ′f − Tn) +mece(Tf − Te) +meLe +mecv(T
′
f − Tf ) = 0 , (15)

qui donne

T ′f =
NmncnTn +mecvTf −mece(Tf − Te)−meLe

Nmncn +mecv
' 117 ◦C (16)

La réponse correcte est D..

7



Exercice 4

Un gaz parfait diatomique subit une série de transformations thermodynamiques, faites d’une suc-
cession d’états proches de l’équilibre. La pression initiale est de 3 bar et la température est de 350◦C
(TA) (suffisamment élevée pour que les vibrations soient possibles). Le gaz subit une compression
adiabatique jusqu’à la température de TB = 525◦C, suivie par une diminution de température à pres-
sion constante qui le ramène à la température TC = 280◦C, et par une expansion isotherme jusqu’au
volume initial. Enfin il subit une transformation isochore jusqu’à la pression initiale.
Indications : nombre de moles=5, Constante des gaz parfaits : R = 8.314 J/K/mol, 1 bar = 105 Pa.

a) Ce cycle peut-il être représenté sur un diagramme p− V ?
� A. Non, car la tempŕature maximale est trop élevée
� B. Oui, car toutes les transformations sont une succession d’états proches de l’équilibre
� C. Non, car ces transformations ne représentent pas des conditions d’équilibre ther-

modynamique.
� D. Oui, car la pression et le volume sont suffisamment petits.

b) Que pouvez-vous dire de ce cycle ?
� A. C’est un cycle moteur car son sens de parcours est anti-horaire.
� B. C’est un cycle réfrigérateur car son sens de parcours est horaire.
� C. C’est un cycle réfrigérateur car il comporte une transformation adiabatique.
� D. C’est un cycle réfrigérateur car son sens de parcours est anti-horaire.
� E. C’est un cycle moteur car son sens de parcours est horaire.

c) Que peut-on dire de la variation d’énergie interne au cours du cycle ∆Ucycle ?
� A. ∆Ucycle > 0 car c’est un cycle moteur.
� B. ∆Ucycle < 0 car c’est un cycle réfrigérateur.
� C. ∆Ucycle = 0 car l’énergie interne est une variable d’état.
� D. ∆Ucycle = 0 car les transformations isotherme et adiabatique se compensent.

d) Quel est le volume occupé au point C du cycle, c’est-à-dire après la transition isobare ?
� A. VC ' 0.1 m3.
� B. VC ' 0.0571 m3.
� C. VC ' 0.0251 m3.
� D. VC ' 0.0053 m3.

e) Soit |Qabs.| et |Qlib.| les quantités de chaleur absorbée et libérée par le gaz au cours du cycle.
Quelle proposition est correcte ?
� A. |Qabs.| ' 0 J et |Qlib.| ' 49980 J.
� B. |Qabs.| ' 2450 J et |Qlib.| ' 49980 J.
� C. |Qabs.| ' 38470 J et |Qlib.| '45750 J.
� D. Qabs. = −Qlib. ' 45754 J.

f) Soit |Wpar| et |Wsur| le travail fait par et fait sur le gaz lors du cycle. Quelle proposition est
correcte ?
� A. |Wpar| ' 28300 J et |Wsur| '35590 J.
� B. |Wpar| ' 0 J et |Wsur| ' 8500 J.
� C. |Wpar| ' 28300 J et |Wsur| '8500 J.
� D. |Wpar| ' 28300 J et |Wsur| '16730 J.

Corrigé
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Figure 1 – cycle dans le diagramme P-V

a) Il est clairement dit dans la donnée que toutes les transformations sont une succession d’états
proches de l’équilibre, donc elles peuvent toutes etre représentées dans le diagramme p − V
(Réponse B.). La figure ci-dessous représente ce cycle.

b) A ce stade de résolution de l’exercice, on peut répondre á cette question en regardant le sens
de parcours du cycle. Le parcours est effectué dans le sens anti-horaire, il s’agit donc d’un
cycle réfrigérateur (Réponse D.). On s’attend donc (et on le vérifiera) que le travail net soit
negatif (i.e. le gaz utilise du travail pour fournir de la chaleur).

c) Réponse C.. La variation d’énergie globale d’un cycle est nulle car les points de départ et de
fin correspondent et l’énergie interne est une variable d’état

d) Réponse C.. Lors du processus A → B, nous avons une compression adiabatique, donc

QAB = 0.

Le gaz diatomique á 350◦C (suffisamment élevée pour que les vibrations soient possibles) a
ν = 7 degrés de liberté. CV a la valeur CV = ν

2
R = 7

2
R = 29.05 J×mol−1×K−1.

WAB = −∆UAB = −nCV ∆T = −n7

2
R(TB − TA) = 5 ∗ 29.05 ∗ (525− 350) = −25419 J < 0.

9



Le gaz reçoit du travail (le travail est fait sur le gaz).

Lors du processus B → C, nous avons un refroidissement isobare, donc :

WBC = pB,C(VC − VB)

Nous calculons VB sachant que la transformation A → B est adiabatique.

TAV
γ−1
A = TBV

γ−1
B

⇒ VB
VA

=

(
TA
TB

) 1
γ−1

=

(
TA
TB

) 1
2+ν
ν −1

=

(
TA
TB

) ν
2

=

(
623

798

) ν
2

VA =
nRTA
pA

=
5× 8.3× (350 + 273)

3× 105
= 0.0862 m3

VB =

(
623

798

) 7
2

× 0.0862 = 0.0362 m3

Il ne reste plus qu’á calculer pB et VC .

pB =
nRTB
VB

=
5× 8.3× (798)

0.0362
= 9.1398× 105 Pa

Sachant que pC = pB et TC = 553K :

VC =
nRTC
pC

=
5× 8.3× (553)

9.1398× 105
= 0.0251 m3

Enfin :
WBC = pB,C(VC − VB) = −10168 J < 0

En appliquant la premiére loi de la thermodynamique, nous savons que :

QBC = ∆UBC +WBC

Pour un gaz parfait :
∆UBC = nCV (TC − TB) = −35586 J < 0

Donc :
QBC = −35586− 10168 = −45754 J < 0

Le gaz reçoit du travail WBC et libére une chaleur |QBC |.

Lors du processus C → D, nous avons un expansion isotherme, donc

∆UCD = 0 (car ∆T = 0)

QCD = WCD = nRTC,D ln

(
VD
VC

)
= 5× 8.3× 553× ln

(
0.0862

0.0251

)
= 28302 J > 0

Le gaz reçoit une chaleur |QCD|. Le travail est effectué par le gaz.
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Lors du processus D → A, nous avons un transformation isochore, donc :

WDA = 0 (car dV = 0) et QDA = ∆UDA = nCV ∆T

QDA = ∆UDA = n
7

2
R(TA − TD) = 5× 7

2
× 8.3× (350− 280) = 10168 J > 0.

Le gaz reçoit une chaleur |QDA|.

Lors du cycle complet, ∆Ucycle = 0, le premier principe de la thermodynamique donne :

∆Ucycle = 0 = Qcycle−Wcycle ⇒ Qcycle = Wcycle = WAB +WBC +WCD +WDA = −7284.5 J < 0

On vérfie donc bien que le travail net est negatif, la chaleur net échangée est positive. Le
refrigérateur fournit de la chaleur et reçoit du travail.

e) Réponse C. Les chaleurs totale absorbée et libérée valent :

Qabs. = QAD +QCD = 38469 J et Qlib. = QBC = −45754 J.

f) Réponse A.. Les travaux totaux fait par et fait sur le gaz valent

Wpar = WCD = 28302 J et Wsur = WAB +WBC = −35586 J.
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Statistiques – moyenne : 40.63/80

12


