Physique générale II — Section SV Prof. Furno

Avril 2020 mis a jour le 22 mars 2022 a 10:23

Test de mi-semestre

Exercice 1 (20 points)

Deux cavaliers intergalactiques, A et B, vont se défier dans un combat pour la paix du Grand Nuage
de Magellan. Pour cela, les cavaliers se font face, sur des vélos électriques de longueur au repos Ly = 1
m et de masse totale m = 200 kg, fonctionnant grace a une batterie. Ces vélos électriques atteignent
la vitesse relativiste v = 0.8¢, avec ¢ la vitesse de la lumiere. Les regles du combat sont simples : les
cavaliers foncent 1'un vers 'autre suivant une trajectoire rectiligne avec un petit décalage latéral de
fagon & ne pas entrer en collision (voir figure ci-dessous). Ils doivent faire tomber leur adversaire de
son vélo en décochant une fleche dans sa roue avant. La fleche située tout a I’arriere du vélo (en rouge
sur la figure) est lancée perpendiculairement a la trajectoire et son temps de parcours est négligeable.
Sur la figure, on a noté Ly|r, et Lo|r,, les longueurs propres des vélos mesurées dans leur référentiel
propre R4 et Rp.

ol wl_

|

a) Le cavalier A décide de déclancher sa fleche au moment ou I’avant de son vélo est parfaitement
aligné avec 'arriere du vélo de B. Dans quel ordre, le cavalier B percoit-il ces 2 événements ?

b) Est-ce que le cavalier A remporte le combat, c’est-a-dire arrive-t-il a atteindre la roue avant
de B et faire tomber son adversaire ?

c) Apres le combat, le vainqueur décélere jusqu’a l'arrét total de son vélo électrique. On suppose
que ce dernier est équipé d'un systeme capable de recharger la batterie avec une efficacité de
n = 0.3. Quelle quantité d’énergie a été rajoutée a la batterie une fois le vélo arrété ?

Corrigé



2)

(7 points) Pour analyser cette situation, on introduit deux référentiel, R 4 et Rp, avec comme
repere spatio-temporel (0,t,z) and (0,2, ') associés & A et B, respectivement (voir figure
ci-dessous).

On définit les événements :

— & : Pavant du vélo de A se trouve au méme niveau que 'arriere du vélo de B,

— &9 : Le cavalier A décoche sa fleche en direction de B.

Dans R4, les événements &; et & sont repérés par les coordonnées (z1,t1) et (z2,t2). On a
donc que Az := x5 — 11 = —Lg, car Ly est la longueur du vélo de A mesurée dans R 4, tandis
que At := ty — t; = 0 car ces deux événements sont simultanés par le cavalier A dans son
référentiel. Pour savoir dans quel ordre, le cavalier B, dans son référentiel, percoit la tactique
de A, on applique les transformations Lorentz, c¢’est-a-dire

cAt = c(ty, —t)) = v(v) (cAt — Ax), (1)

ouy(v) =1/4/1— B2, et f = —v/e, car le référentiel Ry se rapproche de R4 avec une vitesse
v = —ve,. On a donc que

/ v / /
c(ty—t)) = —y(v)fAx = —”y(U)ELO <0=t] >ts. (2)

Ceci illustre bien un principe de la relativité : la simultanéité est relative. Dans ce cas, pour
le cavalier B, A décoche sa fleche avant que I'arriere de son vélo soit au niveau de I'avant du

vélo de A.

(7 points) Pour savoir si A remporte le combat durant cette tentative, il faut se demander ou
se trouve l'avant du vélo de B dans le référentiel 'R 4, c’est-a-dire la longueur du vélo de B
mesurée dans le référentiel de A. Pour cela, on définit :

— &5 : position de la roue avant de B au moment de &;.



De plus, on introduit ses coordonnées spatio-temporelles par (x3,t3) et (x%,t3) dans R4 et
R, respectivement. Comme L est une longueur propre du vélo de B dans Rp, on a doit que
Ax' =z} — 2 = —Ly, tandis que At := t3 —t; = 0 dans R 4. On peut donc appliquer les
transformation de Lorentz, c¢’est-a-dire

Ar' = y(v) (Az — BcAt) . (3)

On obtient que la longueur

: (4)

ce qui est la contraction des longueurs. On en déduit donc que le cavalier A va louper sa
tentative, car 'avant de B se trouve en —Lg/v(v) avec y(v) > 1. Par application numérique,
avec 7(0.8¢) = 1/4/1 —(0.8)? ~ 1.67, on trouve que la longueur de B pergue par A est de
Ly/1.67 ~ 0.6m.

Dans le repere R 4 est donc illustrée par la figure ci-dessous.

L
/ y(v)

(6 points) On suppose que le systéeme est capable de convertir 30% (n = 0.3) de I"énergie
cinétique perdue par le vélo lors du freinage. On peut donc écrire que I’énergie emmagasinée
dans la batterie, U, est

U=nkK, (5)

ou K est la variation cinétique. Comme la vitesse des vélos électriques est relativiste, v = 0.8¢,
I’énergie cinétique est donc donnée par

K = (y(v) — 1)mc?. (6)

Par application numérique, on trouve que K = 1.20 x 10! J, et donc U = 3.60 x 10*® J.



Exercice 2 (20 points)

Un récipient isolé, fermé par un piston de masse négligeable et de section A = 20cm?, qui peut
bouger verticalement et également isolé, contient quatre moles de gaz parfait. La température du gaz
a Iéquilibre est de 20°C et la pression externe est la pression atmosphérique. Un poids de masse m
est posé sur le piston, créant une situation hors équilibre. Le piston se déplace jusqu’a une nouvelle
situation d’équilibre. La température et le volume du gaz sont alors 246°C et 58 litres, respectivement.

2)
b)

)

Quelle était la valeur du volume occupé par le gaz avant de déposer le poids ?
Calculer la masse m du poids ?

Le gaz dans le récipient est-il monoatomique ou diatomique ? Justifiez votre réponse.

Indications : Constante des gaz parfaits R = 8.314 Jmol ' K~'; latm = 1.01 x 10°Pa.

Corrigé

a)

(5 points) Grace a la loi de gaz parfaits pV' = nRT, nous pouvons calculer le volume occupé
par le gaz :

nRT
= (7)

ol la temperature est connue ainsi que n et R. Avant de mettre le poids, la pression est la
meéme que la pression atmosphérique, alors on peut trouver le volume comme :

V

_ nRT;
Po
ou pg est la pression atmosphérique, et T; la temperature a 'etat initial.

Vi (8)

Application numérique :

4 x8.314 x 293
" 1.01 % 107
(8 points) A I’état final, il faut considérer le systéme a I’équilibre mécanique : la pression a

I'intérieur du cylindre est égale a la pression atmosphérique a laquelle s’ajoute la pression
associée a la force de pesanteur du poids de masse m sur le piston :

= 0.096 m® (9)

mg
Pgaz = Pf = Do + Ppoids = Po + 7 (10)

La loi des gaz parfait s’applique toujours
m

V
g) Vi=nRT; = mg—f =nRTy — poVs

prf = nRTf = <po + A )

La masse du poids est donc :

nRTf — Po Vf

m=A
gVy

(11)

Application numérique

" 4 x 8.314 x 519 — 1.01 x 10° x 0.058

=20 x 107*
m x 9.81 x 0.058

=40kg



¢) (7 points) Le récipient et le piston étant isolés, il n’y a pas d’échange de chaleur avec I’extérieur.
Le processus étudié est donc adiabatique. Cependant, et c’est la le point-clé pour résoudre
cette question, lorsque le poids est placé, le gaz dans le récipient est hors équilibre (c’est
dit explicitement dans la donnée!) ce qui veut dire que la pression (et la température) n’est
pas uniforme a l'intérieur du volume et n’est peut-étre méme pas définissable! On ne sait
pas décrire I’évolution du gaz entre les états initial et final. C’est un processus irréversible.
On étudie donc une expansion adiabatique irréversible. Dans ce cas, I’équation d’état pV7 =
const. n’est pas valable. Par contre, le premier principe de la thermodynamique est toujours
appliquable entre 2 états d’équilibre. De plus I’énergie interne étant une variable d’état, sa
variation ne dépend pas du chemin suivi :

AU=Q-W =AU =0-W =W =—AU = —nCy (T - T). (12)

De plus comme la transformation n’est pas quasi-statique, il faut revenir a la défi

nition générale du travail thermodynamique des forces de pression :

Vi
oW = peztdv =W = / pextdv = <p0 + @) (Vf - V» (13)
Vi A
On a donc :
m
(po+=2) (V= Vi) = =nCy(Ty = To), (14)
d’ou :
_ ma) (v, — Vi

n(Ty = T;)

Pour comprendre si le gaz est monoatomique ou diatomique il faut trouver la valeur numérique
de la chaleur spécifique molaire a volume contant : Cy. La chaleur spécifique molaire dépend
du degré de liberté des molécules de gaz comme :

Cy = 3R, (16)

ou v est le nombre de degrés de liberté. Nous avons donc :
— gaz monoatomique = v =3 = Cy = %R.

— gaz diatomique = v =5 = Cy = gR.

Application numérique :

— (1.01 x 10° 4 5225584 (0.058 — 0.096) 3
Cy = 20x10 ~125Jmol "K' =R
v 4 x (519 — 203) o 2

Le gaz est monoatomique.



Exercice 3 (20 points)

Un cube d’or de 1.5 kg a été refroidi a —250°C. Le cube est laché d’une hauteur de 4 m dans un
récipient isolé contenant 3 kg d’eau a 2°C. On considere que le récipient est suffisamment profond
pour que le cube ne touche pas le fond.

a) Quelle est la température du systeme une fois I'equilibre atteint ?

b) Est-ce que de I'eau sera transformée en glace ? Jusitifiez votre réponse.

c) Calculez la quantité de glace qui se forme, si elle s’est formée.

d) Est-ce que la Loi du Delong-Petit est verifiée pour I'or ?
Indications : Chaleur spécifique de l'or : ¢,, = 129 J kg~ ! K~!; Chaleur spécifique de l'eau : cean =
4186 J kg=! K—!; Chaleur latente de fusion de la glace : Lgs, = 333kJ kg™ ; Chaleur spécifique de la
glace Cglace = 2110 Jkg 'K~ ;Masse molaire de ’or : M, = 197 g mol .

Corrigé

a) (7 points) Le cube d’or perd de I’énergie lors de sa chute et gagne de la chaleur au contact
de 'eau. L’eau perd de la chaleur au contact du cube tres froid et éventuellement fait une
transition de phase. Le systeme "eau + cube” étant isolé, la somme des chaleurs échangées
est nulle.

— Hypothese 1 : Ty > 0°C : Aucune quantité d’eau n’a gelé.

_morgh + MorCor (Tf — Tor) + MeauCeau (Tf - Teau) =0

:> Tf — mOI‘gh + mOI‘cOT‘TOI‘ + meauceauTeau )

mOI'COI' + meauceau
Application numérique

1.5 x9.81 x4+ 1.5 x 129 x (=250) +3 x 4186 x 2

—2°C.
1.5 x 129 + 3 x 4186 ¢

Ty
L’application numérique montre que cette hypothese est fausse.
— Hypothese 2 : Ty < 0°C : Toute 'eau a gelé.
_morgh + morcor(Tf - Tor) + meauceau<0 - Teau) - meauLf + meaucglace(Tf - O) =0.

morgh + morcorTor + meauceauTeau + meauLf
MorCor + MeauCglace

= Tf = (18)

Application numérique

o 15X 981 x4+ 1.5 x 129 x (—250) + 3 x 4186 x 2 + 3 x 333 x 10° ~ 41150°C
I 1.5 x 129 + 3 x 2110 B '

L’application numérique montre que cette hypothese est fausse.
Donc la réponse a la question posée est : la température finale du systeme est de 0°C.

b) (4 points) Dans le cas Ty = 0°C, le cube d’or est plongé dans de I’eau mais peut-étre de glace
s’est formée. Ceci est le cas si la quantité de chaleur recue par le cube |mocCor(Tf — Toy)| est
supérieure a la quantité de chaleur cédée par 'eat |MeauCean (T — Tean)|-

Application numérique :

1.5 % 129 x (0 +250)| ~ 4.8 x 10° > 2.5 x 10*J ~ |3 x 4186 x (0 — 2)]

L’application numérique montre que c’est bien le cas.
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c) (5 points) La conservation de ’énergie thermique s’écrit alors :
_morgh + morcor(Tf - Tor) + meauceau(Tf - Teau) - mglaceLf = 0.

_morgh - morcorTor - meauceauTeau
Ly '

(19)

= Mglace =

Application numérique

S —1.5x9.81 x4 — 1.5 x 129 x (—250) — 3 x 4186 x 2
. 333 x 103

~ 0.070kg =70 g.
d) (4 points) La capacité calorifique molaire du cube d’or est :

Cor = Cor X Mo, = 0.129 x 197 = 25.41 Jmol ' K~! ~ 3R

La Loi du Delong-Petit pour l'or est verifiée puisque la valeur de C est entre 23 et 27
Jmol ' K.



Exercice 4 (20 points)

Trois moles de gaz parfait diatomique suivent une série de transformations thermodynamiques,
faites d’une succession d’états proches de I'équilibre, en partant d’une pression de 1 atm et d’une
température de 200°C (suffisamment élevée pour que les vibrations soient possibles). Le gaz subit une
compression adiabatique jusqu’a la température de 600°C, suivie par une dimunition de température
a volume constant qui le ramene a 200°C, et par une expansion isotherme jusqu’a sa pression initiale
de 1 atm.

a) Quelles étapes de ce cycle peuvent étre représentées dans un diagramme p— V' 7 Justifiez votre
réponse. Représentez-les.

b) S’agit-il d’'un cycle moteur un d’un cycle réfrigérateur ? Justifiez votre réponse.

c) Calculez le travail fait par ou sur le gaz et la chaleur échangée sur chaque étape du cycle,
ainsi que pour le cycle complet ;

d) En considérant que le gaz soit du diazote, Ny de masse molaire 28 g/mol, représentez qualitive-
ment les distributions des vitesses (supposées Maxwelliennes) pour les températures minimale
et maximale du cycle. Justifiez vos choix.

Indications : Constante des gaz parfaits : R = 8.3145 Jx mol~!xK~!, 1 atm = 101 325 Pa.

Corrigé

Ty= 3T =600 °C

PA=]atm - TC=TA=200 OC

V

FIGURE 1 - cycle dans le diagramme P-V



a) (4 points) Il est clairement dit dans la donnée que toutes les transformations sont une succession
d’états proches de 1’équilibre, donc elles peuvent toutes étre représentées dans le diagramme
p — V. La figure ci-dessous représente ce cycle.

b) (2 points) A ce stade de résolution de 'exercice, on peut répondre a cette question en regardant
le sens de parcours du cycle. Le parcours est effectué dans le sens anti-horaire, il s’agit donc
d’un cycle réfrigérateur. On s’attend donc (et on le vérifiera) que le travail net soit negatif
(i.e. le gaz utilise du travail pour fournir de la chaleur ).

¢) (8 points) Lors du processus C — B, nous avons une compression adiabatique, donc

Qcp = 0.

Le gaz diatomique a 200°C (suffisamment élevée pour que les vibrations soient possibles) a

v =T degrés de liberté. Cy a la valeur Cy = R = %R.

7 7
Wen = —AUcp = —nCy AT = —ng R(Tp—Te) = —3x 5 x8.31x (600~200) = —34902J < 0.

Le gaz regoit du travail (le travail est fait sur le gaz).
Lors du processus B — A, nous avons un refroidissement isochore, donc

Wpa=0 (car dV =0) et Qpa = AUps =nCyAT

7 7
Qpa = AUps = n§R(TA —Tp) =3 X 5 x 8.31 x (200 — 600) = —34902J < 0.

Le gaz fournit une chaleur Qg4 au contact de la source a T'y.
Lors du processus A — C, nous avons un expansion isotherme, donc

AUyc =0 (car AT =0)

Ve
Qac = Wac =nRTscln (—C)
Va

Or, C — B est adiabatique, donc :

TpVy ' =TV
:>V0_V0_ Tgs ﬁ_ Tg #_1_ Ty 5
Va Vi \1¢ - \T¢ - \Te

T 7 873
QAC = WAC = nRTAyczln <T—B) =3x831l x473 x =1In (—> =25293J > 0

11 vient donc :

2 c 2 473

Le gaz regoit une chaleur |Q4¢| . Le travail est effectué par le gaz.

Lors du cycle complet, AUsextcycle = 0, puisque ’énergie interne est une variable d’état. Le
premier principe de la thermodynamique donne :

AUcycle = 0 = Qcycle—Weycle = Qeycle = Weyae = Wep+Wpa+Wac = —34902+0+25293 = —9609 J < O

On vérfie donc bien que le travail net est negatif, la chaleur net échangée est positive. Le
refrigérateur fournit de la chaleur et regoit du travail.

9



d) (6 points) Pour dessiner qualitativement les fonctions de distribution, on doit quand méme
estimer au moins deux parametres : la vitesse la plus probable et la largeur de la distribution.
On suppose une distribution Maxwellienne donc la vitesse la plus probable est donnée par :

2kpT
Umax = 5
m

ol kg = 1.38 x 1072 JK~! est la constante de Boltzmann. Il manquait cette indication dans
la donnée !

Application numérique :

2 x 1.38 x 1023 x 473.15
Umax,200 = \/ . . . ~ 5.3 X 102ms_1.

28 x 1073/6.022 x 10%

~72x10°ms %

2 x 1.38 x 10-23 x 873.15
Umax =
1000 28 x 10-3/6.022 x 1023

ol nous avons utilisé le fait que la masse d’'une molécule d’Azote est égale a la masse d’une
mole d’Azote divisée par le nombre d’Avogadro : m = M /N4 avec Ny = 6.022 x 103 mol ™.
Il manquait cette indication dans la donnée!

On a vu dans la série 4 que la largeur de la distribution maxwellienne peut s’écrire :

[kgT
WhMaxw = WGauss. = 2.350 = 2.35 L
m
Application numérique :

1.38 x 10723 x 473.15
Whaxw.200 = 2-35\/ =830ms~!

28 x 1073/6.022 x 10%

1.38 x 1023 x 873.15
w600 = 235 =1196ms*
{Maa.600 \/28 x 10-3/6.022 x 1023 e
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