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Test de mi-semestre

Exercice 1 (20 points)

Deux cavaliers intergalactiques, A et B, vont se défier dans un combat pour la paix du Grand Nuage
de Magellan. Pour cela, les cavaliers se font face, sur des vélos électriques de longueur au repos L0 = 1
m et de masse totale m = 200 kg, fonctionnant grâce à une batterie. Ces vélos électriques atteignent
la vitesse relativiste v = 0.8c, avec c la vitesse de la lumière. Les règles du combat sont simples : les
cavaliers foncent l’un vers l’autre suivant une trajectoire rectiligne avec un petit décalage latéral de
façon à ne pas entrer en collision (voir figure ci-dessous). Ils doivent faire tomber leur adversaire de
son vélo en décochant une flèche dans sa roue avant. La flèche située tout à l’arrière du vélo (en rouge
sur la figure) est lancée perpendiculairement à la trajectoire et son temps de parcours est négligeable.
Sur la figure, on a noté L0|RA et L0|RB , les longueurs propres des vélos mesurées dans leur référentiel
propre RA et RB.

a) Le cavalier A décide de déclancher sa flèche au moment où l’avant de son vélo est parfaitement
aligné avec l’arrière du vélo de B. Dans quel ordre, le cavalier B perçoit-il ces 2 événements ?

b) Est-ce que le cavalier A remporte le combat, c’est-à-dire arrive-t-il à atteindre la roue avant
de B et faire tomber son adversaire ?

c) Après le combat, le vainqueur décélère jusqu’à l’arrêt total de son vélo électrique. On suppose
que ce dernier est équipé d’un système capable de recharger la batterie avec une efficacité de
η = 0.3. Quelle quantité d’énergie a été rajoutée à la batterie une fois le vélo arrêté ?

Corrigé
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a) (7 points) Pour analyser cette situation, on introduit deux référentiel, RA et RB, avec comme
repère spatio-temporel (0, t, x) and (0′, x′, t′) associés à A et B, respectivement (voir figure
ci-dessous).

On définit les événements :

— E1 : l’avant du vélo de A se trouve au même niveau que l’arrière du vélo de B,
— E2 : Le cavalier A décoche sa flèche en direction de B.

Dans RA, les événements E1 et E2 sont repérés par les coordonnées (x1, t1) et (x2, t2). On a
donc que ∆x := x2− x1 = −L0, car L0 est la longueur du vélo de A mesurée dans RA, tandis
que ∆t := t2 − t1 = 0 car ces deux événements sont simultanés par le cavalier A dans son
référentiel. Pour savoir dans quel ordre, le cavalier B, dans son référentiel, perçoit la tactique
de A, on applique les transformations Lorentz, c’est-à-dire

c∆t′ = c (t′2 − t′1) = γ(v) (c∆t− β∆x) , (1)

où γ(v) = 1/
√

1− β2, et β = −v/c, car le référentiel RB se rapproche de RA avec une vitesse
v = −vex. On a donc que

c (t′2 − t′1) = −γ(v)β∆x = −γ(v)
v

c
L0 < 0⇒ t′1 > t′2. (2)

Ceci illustre bien un principe de la relativité : la simultanéité est relative. Dans ce cas, pour
le cavalier B, A décoche sa flèche avant que l’arrière de son vélo soit au niveau de l’avant du
vélo de A.

b) (7 points) Pour savoir si A remporte le combat durant cette tentative, il faut se demander où
se trouve l’avant du vélo de B dans le référentiel RA, c’est-à-dire la longueur du vélo de B
mesurée dans le référentiel de A. Pour cela, on définit :

— E3 : position de la roue avant de B au moment de E1.

2



De plus, on introduit ses coordonnées spatio-temporelles par (x3, t3) et (x′3, t3) dans RA et
RB, respectivement. Comme L0 est une longueur propre du vélo de B dans RB, on a doit que
∆x′ := x′3 − x′1 = −L0, tandis que ∆t := t3 − t1 = 0 dans RA. On peut donc appliquer les
transformation de Lorentz, c’est-à-dire

∆x′ = γ(v) (∆x− βc∆t) . (3)

On obtient que la longueur

∆x =
∆x′

γ(v)
, (4)

ce qui est la contraction des longueurs. On en déduit donc que le cavalier A va louper sa
tentative, car l’avant de B se trouve en −L0/γ(v) avec γ(v) > 1. Par application numérique,
avec γ(0.8c) = 1/

√
1− (0.8)2 ' 1.67, on trouve que la longueur de B perçue par A est de

L0/1.67 ' 0.6m.

Dans le repère RA est donc illustrée par la figure ci-dessous.

c) (6 points) On suppose que le système est capable de convertir 30% (η = 0.3) de l’énergie
cinétique perdue par le vélo lors du freinage. On peut donc écrire que l’énergie emmagasinée
dans la batterie, U , est

U = ηK, (5)

où K est la variation cinétique. Comme la vitesse des vélos électriques est relativiste, v = 0.8c,
l’énergie cinétique est donc donnée par

K = (γ(v)− 1)mc2. (6)

Par application numérique, on trouve que K = 1.20× 1019 J, et donc U = 3.60× 1018 J.
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Exercice 2 (20 points)

Un récipient isolé, fermé par un piston de masse négligeable et de section A = 20 cm2, qui peut
bouger verticalement et également isolé, contient quatre moles de gaz parfait. La température du gaz
à l’équilibre est de 20◦C et la pression externe est la pression atmosphérique. Un poids de masse m
est posé sur le piston, créant une situation hors équilibre. Le piston se déplace jusqu’à une nouvelle
situation d’équilibre. La température et le volume du gaz sont alors 246◦C et 58 litres, respectivement.

a) Quelle était la valeur du volume occupé par le gaz avant de déposer le poids ?

b) Calculer la masse m du poids ?

c) Le gaz dans le récipient est-il monoatomique ou diatomique ? Justifiez votre réponse.

Indications : Constante des gaz parfaits R = 8.314 J mol−1 K−1; 1atm = 1.01× 105Pa.

Corrigé

a) (5 points) Grâce à la loi de gaz parfaits pV = nRT , nous pouvons calculer le volume occupé
par le gaz :

V =
nRT

p
(7)

où la temperature est connue ainsi que n et R. Avant de mettre le poids, la pression est la
même que la pression atmosphérique, alors on peut trouver le volume comme :

Vi =
nRTi
p0

(8)

où p0 est la pression atmosphérique, et Ti la temperature à l’etat initial.

Application numérique :

Vi =
4× 8.314× 293

1.01× 105
= 0.096 m3 (9)

b) (8 points) A l’état final, il faut considérer le système à l’équilibre mécanique : la pression à
l’intérieur du cylindre est égale à la pression atmosphérique à laquelle s’ajoute la pression
associée à la force de pesanteur du poids de masse m sur le piston :

pgaz = pf = p0 + ppoids = p0 +
mg

A
(10)

La loi des gaz parfait s’applique toujours

pfVf = nRTf ⇒
(
p0 +

mg

A

)
Vf = nRTf ⇒ m

gVf
A

= nRTf − p0Vf

La masse du poids est donc :

m = A
nRTf − p0Vf

gVf
. (11)

Application numérique

m = 20× 10−4 × 4× 8.314× 519− 1.01× 105 × 0.058

9.81× 0.058
= 40 kg
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c) (7 points) Le récipient et le piston étant isolés, il n’y a pas d’échange de chaleur avec l’extérieur.
Le processus étudié est donc adiabatique. Cependant, et c’est là le point-clé pour résoudre
cette question, lorsque le poids est placé, le gaz dans le récipient est hors équilibre (c’est
dit explicitement dans la donnée !) ce qui veut dire que la pression (et la température) n’est
pas uniforme à l’intérieur du volume et n’est peut-être même pas définissable ! On ne sait
pas décrire l’évolution du gaz entre les états initial et final. C’est un processus irréversible.
On étudie donc une expansion adiabatique irréversible. Dans ce cas, l’équation d’état pV γ =
const. n’est pas valable. Par contre, le premier principe de la thermodynamique est toujours
appliquable entre 2 états d’équilibre. De plus l’énergie interne étant une variable d’état, sa
variation ne dépend pas du chemin suivi :

∆U = Q−W ⇒ ∆U = 0−W ⇒ W = −∆U = −nCV (Tf − Ti). (12)

De plus comme la transformation n’est pas quasi-statique, il faut revenir à la défi

nition générale du travail thermodynamique des forces de pression :

δW = pextdV ⇒ W =

∫ Vf

Vi

pextdV =
(
p0 +

mg

A

)
(Vf − Vi). (13)

On a donc : (
p0 +

mg

A

)
(Vf − Vi) = −nCV (Tf − Ti), (14)

d’où :

CV =
−
(
p0 + mg

A

)
(Vf − Vi)

n(Tf − Ti)
(15)

Pour comprendre si le gaz est monoatomique ou diatomique il faut trouver la valeur numérique
de la chaleur spécifique molaire à volume contant : CV . La chaleur spécifique molaire dépend
du degré de liberté des molécules de gaz comme :

CV =
ν

2
R, (16)

où ν est le nombre de degrés de liberté. Nous avons donc :

— gaz monoatomique ⇒ ν = 3⇒ CV = 3
2
R.

— gaz diatomique ⇒ ν = 5⇒ CV = 5
2
R.

Application numérique :

CV =
−
(
1.01× 105 + 40×9.81

20×10−4

)
(0.058− 0.096)

4× (519− 293)
' 12.5 J mol−1 K−1 =

3

2
R

Le gaz est monoatomique.
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Exercice 3 (20 points)

Un cube d’or de 1.5 kg a été refroidi à −250◦C. Le cube est lâché d’une hauteur de 4 m dans un
récipient isolé contenant 3 kg d’eau à 2◦C. On considère que le récipient est suffisamment profond
pour que le cube ne touche pas le fond.

a) Quelle est la température du système une fois l’equilibre atteint ?
b) Est-ce que de l’eau sera transformée en glace ? Jusitifiez votre réponse.
c) Calculez la quantité de glace qui se forme, si elle s’est formée.
d) Est-ce que la Loi du Delong-Petit est verifiée pour l’or ?

Indications : Chaleur spécifique de l’or : cor = 129 J kg−1 K−1 ; Chaleur spécifique de l’eau : ceau =
4186 J kg−1 K−1 ; Chaleur latente de fusion de la glace : Lfus. = 333 kJ kg−1 ; Chaleur spécifique de la
glace cglace = 2110 J kg−1 K−1 ;Masse molaire de l’or : Mor = 197 g mol−1.

Corrigé

a) (7 points) Le cube d’or perd de l’énergie lors de sa chute et gagne de la chaleur au contact
de l’eau. L’eau perd de la chaleur au contact du cube très froid et éventuellement fait une
transition de phase. Le système ”eau + cube” étant isolé, la somme des chaleurs échangées
est nulle.
— Hypothèse 1 : Tf > 0 ◦C : Aucune quantité d’eau n’a gelé.

−morgh+morcor(Tf − Tor) +meauceau(Tf − Teau) = 0

⇒ Tf =
morgh+morcorTor +meauceauTeau

morcor +meauceau
. (17)

Application numérique

Tf =
1.5× 9.81× 4 + 1.5× 129× (−250) + 3× 4186× 2

1.5× 129 + 3× 4186
' −2 ◦C.

L’application numérique montre que cette hypothèse est fausse.
— Hypothèse 2 : Tf < 0 ◦C : Toute l’eau a gelé.

−morgh+morcor(Tf − Tor) +meauceau(0− Teau)−meauLf +meaucglace(Tf − 0) = 0.

⇒ Tf =
morgh+morcorTor +meauceauTeau +meauLf

morcor +meaucglace
. (18)

Application numérique

Tf =
1.5× 9.81× 4 + 1.5× 129× (−250) + 3× 4186× 2 + 3× 333× 103

1.5× 129 + 3× 2110
' +150 ◦C.

L’application numérique montre que cette hypothèse est fausse.
Donc la réponse a la question posée est : la température finale du système est de 0�.

b) (4 points) Dans le cas Tf = 0 ◦C, le cube d’or est plongé dans de l’eau mais peut-être de glace
s’est formée. Ceci est le cas si la quantité de chaleur reçue par le cube |morcor(Tf − Tor)| est
supérieure à la quantité de chaleur cédée par l’eau |meauceau(Tf − Teau)|.
Application numérique :

|1.5× 129× (0 + 250)| ' 4.8× 104 J > 2.5× 104 J ' |3× 4186× (0− 2)|

L’application numérique montre que c’est bien le cas.
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c) (5 points) La conservation de l’énergie thermique s’écrit alors :

−morgh+morcor(Tf − Tor) +meauceau(Tf − Teau)−mglaceLf = 0.

⇒ mglace =
−morgh−morcorTor −meauceauTeau

Lf
. (19)

Application numérique

mg =
−1.5× 9.81× 4− 1.5× 129× (−250)− 3× 4186× 2

333× 103
' 0.070 kg = 70 g.

d) (4 points) La capacité calorifique molaire du cube d’or est :

Cor = cor ×Mor = 0.129× 197 = 25.41 J mol−1K−1 ' 3R

La Loi du Delong-Petit pour l’or est verifiée puisque la valeur de C est entre 23 et 27
J mol−1K−1.
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Exercice 4 (20 points)

Trois moles de gaz parfait diatomique suivent une série de transformations thermodynamiques,
faites d’une succession d’états proches de l’équilibre, en partant d’une pression de 1 atm et d’une
température de 200◦C (suffisamment élevée pour que les vibrations soient possibles). Le gaz subit une
compression adiabatique jusqu’à la température de 600◦C, suivie par une dimunition de température
à volume constant qui le ramène à 200◦C, et par une expansion isotherme jusqu’à sa pression initiale
de 1 atm.

a) Quelles étapes de ce cycle peuvent être représentées dans un diagramme p−V ? Justifiez votre
réponse. Représentez-les.

b) S’agit-il d’un cycle moteur un d’un cycle réfrigérateur ? Justifiez votre réponse.

c) Calculez le travail fait par ou sur le gaz et la chaleur échangée sur chaque étape du cycle,
ainsi que pour le cycle complet ;

d) En considérant que le gaz soit du diazote, N2 de masse molaire 28 g/mol, représentez qualitive-
ment les distributions des vitesses (supposées Maxwelliennes) pour les températures minimale
et maximale du cycle. Justifiez vos choix.

Indications : Constante des gaz parfaits : R = 8.3145 J×mol−1×K−1, 1 atm = 101 325 Pa.

Corrigé

Figure 1 – cycle dans le diagramme P-V
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a) (4 points) Il est clairement dit dans la donnée que toutes les transformations sont une succession
d’états proches de l’équilibre, donc elles peuvent toutes être représentées dans le diagramme
p− V . La figure ci-dessous représente ce cycle.

b) (2 points) A ce stade de résolution de l’exercice, on peut répondre à cette question en regardant
le sens de parcours du cycle. Le parcours est effectué dans le sens anti-horaire, il s’agit donc
d’un cycle réfrigérateur. On s’attend donc (et on le vérifiera) que le travail net soit negatif
(i.e. le gaz utilise du travail pour fournir de la chaleur ).

c) (8 points) Lors du processus C → B, nous avons une compression adiabatique, donc

QCB = 0.

Le gaz diatomique à 200◦C (suffisamment élevée pour que les vibrations soient possibles) a
ν = 7 degrés de liberté. CV a la valeur CV = ν

2
R = 7

2
R.

WCB = −∆UCB = −nCV ∆T = −n7

2
R(TB−TC) = −3×7

2
×8.31×(600−200) = −34902 J < 0.

Le gaz reçoit du travail (le travail est fait sur le gaz).

Lors du processus B → A, nous avons un refroidissement isochore, donc

WBA = 0 (car dV = 0) et QBA = ∆UBA = nCV ∆T

QBA = ∆UBA = n
7

2
R(TA − TB) = 3× 7

2
× 8.31× (200− 600) = −34902 J < 0.

Le gaz fournit une chaleur QBA au contact de la source à TA.

Lors du processus A → C, nous avons un expansion isotherme, donc

∆UAC = 0 (car ∆T = 0)

QAC = WAC = nRTA,C ln

(
VC
VA

)
Or, C → B est adiabatique, donc :

TBV
γ−1
B = TCV

γ−1
C

⇒ VC
VA

=
VC
VB

=

(
TB
TC

) 1
γ−1

=

(
TB
TC

) 1
2+ν
ν −1

=

(
TB
TC

) ν
2

Il vient donc :

QAC = WAC = nRTA,C
ν

2
ln

(
TB
TC

)
= 3× 8.31× 473× 7

2
ln

(
873

473

)
= 25293 J > 0

Le gaz reçoit une chaleur |QAC | . Le travail est effectué par le gaz.

Lors du cycle complet, ∆Utextcycle = 0, puisque l’énergie interne est une variable d’état. Le
premier principe de la thermodynamique donne :

∆Ucycle = 0 = Qcycle−Wcycle ⇒ Qcycle = Wcycle = WCB+WBA+WAC = −34902+0+25293 = −9609 J < 0

On vérfie donc bien que le travail net est negatif, la chaleur net échangée est positive. Le
refrigérateur fournit de la chaleur et reçoit du travail.
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d) (6 points) Pour dessiner qualitativement les fonctions de distribution, on doit quand même
estimer au moins deux paramètres : la vitesse la plus probable et la largeur de la distribution.
On suppose une distribution Maxwellienne donc la vitesse la plus probable est donnée par :

vmax =

√
2kBT

m
,

où kB = 1.38× 10−23 J K−1 est la constante de Boltzmann. Il manquait cette indication dans
la donnée !

Application numérique :

vmax,200 =

√
2× 1.38× 10−23 × 473.15

28× 10−3/6.022× 1023
' 5.3× 102 m s−1.

vmax,600 =

√
2× 1.38× 10−23 × 873.15

28× 10−3/6.022× 1023
' 7.2× 102 m s−1.

où nous avons utilisé le fait que la masse d’une molécule d’Azote est égale à la masse d’une
mole d’Azote divisée par le nombre d’Avogadro : m = M/NA avec NA = 6.022× 1023 mol−1.
Il manquait cette indication dans la donnée !

On a vu dans la série 4 que la largeur de la distribution maxwellienne peut s’écrire :

wMaxw ' wGauss. ' 2.35σ = 2.35

√
kBT

m
.

Application numérique :

wMaxw.200 = 2.35

√
1.38× 10−23 × 473.15

28× 10−3/6.022× 1023
= 880 m s−1

wMaxw.600 = 2.35

√
1.38× 10−23 × 873.15

28× 10−3/6.022× 1023
= 1196 m s−1
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