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Test de mi-semestre

Exercice 1 25 points

Le système solaire le plus proche du notre est Proxima, à 4.24 années-lumières soit 4 × 1013 km.
En 2016, il a même été découvert une planète dans la zone habitable de cette étoile. La première
mission interstellaire à bord du vaisseau SSV2019 se prépare donc. Cependant, les ingénieurs sont
formels : dans ce type de vaisseau (mv=1000 tonnes), on peut seulement stocker des ressources en
eau et oxygène pour au maximum 3 ans. Les stocks pourront être rétablis à Proxima.

a) 5 points En négligeant les effets d’accélération, à quelle vitesse devra voyager ce vaisseau
pour accomplir ce voyage dans les 3 ans ? Est-ce possible ?

b) 5 points Le moteur du SSV2019 utilise la réaction nucléaire qui annihile H̄ avec H. De quelle
masse de H̄ aura-t-on besoin pour atteindre la vitesse nécessaire ?

A mi-chemin vers Proxima, l’incroyable arrive : l’équipage du SSV2019 reçoit un message radio envoyé
par un vaisseau extra-terrestre en provenance de Sirius se dirigeant également vers Proxima. Selon
le message, les extra-terrestres se trouvent à mi-chemin de Proxima, soit, pour eux, encore 2.5 ans
de voyage et ils donnent rendez-vous à l’équipage du SSV2019 sur Proxima.

c) 5 points A quelle vitesse les extra-
terrestres voyagent-ils, vu par le vaisseau
SSV2019 ?

d) 5 points Toujours depuis le référentiel du
vaisseau SSV2019, quelle durée se sera
écoulée entre l’envoi du message et l’arrivée
des extra-terrestres sur Proxima ?

e) 5 points Une fois à Proxima, l’équipage
envoie un message radio à la Terre concer-
nant ce premier contact. A la réception de
ce message sur Terre, combien de temps se
sera-t-il écoulé depuis le départ du vaisseau
SSV2019 ?

Corrigé

Indication : Notez que

1 a.l. = 1 an× c (1)

= (365× 24× 3600)[s]︸ ︷︷ ︸
1[an]

×3× 108
[m

s

]
(2)

Ceci permet (mais pas nécessaire) de simplifier les applications numériques afin de rester dans les
unités de [a.l.] (années-lumières) pour les distances et [an] (années) pour les durées.

a) Une première façon d’avoir quelques points en relativité est de faire un beau dessin et de définir
les référentiels. Commençons par définir les référentiels utiles et les coordonnées associées :
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— R est le référentiel lié aux systèmes solaires (approximés comme stationaires)
— R′ est le référentiel lié au vaisseau SSV2019.
— R′′ est le référentiel lié au vaisseau des extra-terrestres.
Le choix des coordonnées est indiqué sur la figure.
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Remarque : Les distances données dans l’énoncé sont mesurées dans le référentiel R.

Rappel : γ = 1√
1−v2/c2

Pour trouver la vitesse à laquelle doit voyager SSV2019, on utilise la relation de dilatation du
temps :

∆t′ =
∆t

γ
=
D

γv
⇒ v =

√
1− v2

c2

D

∆t′
⇒ v

c
=

1√(
∆t′c
D

)2
+ 1

, (3)

où D=4.24 a.l. est la distance Soleil-Proxima, mesurée dans le référentiel R et ∆t′ = 3 ans
est la durée maximale du voyage, mesurée dans R′.
Application numérique :

v

c
=

1√(
3

4.2

)2
+ 1
' 0.81 ⇒ γ = 1.73.

Le vaisseau SSV2019 doit voyager à v = 0.81c.
b) La réaction d’annihilation de l’anti-hydrogène H̄ par l’hydrogène H

H̄ +H = 2γ?,

libère une énergie totale E = (mH̄ +mH)c2, sous forme de 2 photons γ?.
On suppose que toute l’énergie issue des réactions nucléaires est convertie en énergie cinétique
Ec,v du vaisseau de masse mv.

E = Ec,v ⇒ (mH̄ +mH)c2 = (γ − 1)mvc
2.

Or mH̄ = mH , on trouve donc :

mH̄ =
(γ − 1)mv

2
= 365× 103 kg (4)
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c) On sait que dans le référentiel R′′, la durée du voyage des extra-terrestres sera de ∆t′′e = 5
ans. Dans le référentiel R, on peut calculer la distance Sirius-Proxima De par le théorème de
Pythagore :

De =
√

8.22 − 4.242 ' 7.5 a.l.

Tout comme au a), on calcule la vitesse relative ve des extra-terrestres dans R′′ par rapport
à R :

ve
c

=
1√(

∆t′′e c
De

)2

+ 1

' 0.83.

Dans le référentiel R, la vitesse du vaisseau extra-terrestre se décompose comme suit : ~ve =
ve,xêx + ve,yêy avec ve,x = 0 et ve,y = ve, tandis que dans le référentiel R′, on a ~v′e = v′e,xê

′
x +

v′e,yê
′
y. Les composantes v′e,x et v′e,y, mesurées dans le référentiel R′, sont données par les

transformations de Lorentz pour les vitesses avec R qui s’éloigne de R′ à la vitesse −v :

v′e,x =
ve,x − v
1− ve,x v

c2

= −v = −0.81c; (5)

v′e,y =
ve,y

γ
(
1− ve,x v

c2

) =
ve
γ

=
0.83c

1.73
' 0.48c. (6)

d) Pour trouver le temps écoulé ∆t′e,mi−chemin, mesuré dans R′, entre le moment où les extra-
terrestres envoient le message au SSV2019 et leur arrivée vers Proxima, il faut connâıtre, dans
R′, la distance restante à parcourir ainsi que la vitesse du vaisseau extra-terresre. Dans R,
il leur reste à parcourir la distance De/2 mais c’est la même distance dans le référentiel R′
puisque seules les distances dans le sens de propagation sont sujettes aux effets relativistes.
De plus, de la question c), on a v′e,y. Le temps ∆t′e,mi−chemin est donné par :

∆t′e,mi−chemin =
De/2

v′e,y
=

7.5/2

0.48c
' 7.8 ans.
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Le message est reçu sur Terre
Evénement #5

De

D

Evénement #0

Le vaisseau SSV2019 quitte la Terre ∆tinfo

e) Dans quel référentiel doit être calculé le temps demandé ? Dans le référentiel R puisque c’est
sur Terre que l’on veut savoir combien de temps s’est écoulé entre le départ de SSV2019
et la réception de son message envoyé depuis Proxima. Cette durée, qu’on note ∆tinfo. peut
être décomposée en : temps écoulé entre le départ de SSV2019 et l’envoi du message de-
puis Proxima, noté ∆tSSV2019,envoi + temps de propagation du message entre Proxima et la
Terre, qu’on appelle ∆tSSV2019,mes.. Ce dernier, dans le référentiel R, est simplement donné par
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∆tSSV2019,mes. = D
c

= 4.24 ans puisque les ondes se propagent à la vitesse de la lumière. Soit

∆tinfo = ∆tSSV2019,envoi + ∆tSSV2019,mes. = ∆tSSV2019,envoi + 4.24.

Comment calculer ∆tSSV2019,envoi ?
On va d’abord caculer ce temps dans le référentiel lié à SSV2019 R′ puis appliquer une
transformation de Lorentz complète pour revenir dans R.
Dans R′, ∆t′SSV2019,envoi se décompose en : temps de voyage du SSV2019 entre la Terre et
Proxima + éventuellement, temps d’attente du vaisseau extra-terrestre une fois arrivé vers
Proxima. Soit

∆t′SSV2019,envoi = ∆t′ + ∆t′attente = 3 + ∆t′attente,

puisque ∆t′ est une donnée du problème, utilisé à la question a). Toute la difficulté de l’exercice
consiste donc à estimer ∆t′attente et la figure ci-après doit nous y aider. Au moment de la
réception du message des extra-terrestres, SSV2019 voyage depuis 1.5 ans. Le temps d’attente
est donné par la durée du voyage du vaisseau des extra-terrestres depuis le moment où ils
envoient leur message ∆t′e,mi−chemin (question d)) auquel on enlève le temps de propagation
∆t′e,mes. du message des extra-terrestres et aussi la durée de la deuxième moitié du voyage de
SSV2019. Comme il s’agit d’onde radio, le message est transporté à la vitesse c. On cherche
donc la distance D′mes. entre le point d’émission et le point de réception du message, dans le
référentiel R′. Cette distance est donnée par Pythagore :

D′mes. =

√(
D′

2

)2

+

(
D′e
2

)2

=

√(
D

2γ

)2

+

(
De

2

)2

' 3.94 a.l.,

où l’on a utilisé la contraction des longueurs dans la deuxième équation ainsi que le fait que
les distances dans la direction y ne sont pas contractées pour un objet se déplaçant dans la
direction x.
On obtient donc

∆t′e,mes. =
D′mes.

c
= 3.94 ans ⇒ ∆t′attente = ∆t′e,mi−ch. −∆t′e,mes. −∆t′SSV2109,mi−ch..

soit ∆t′attente = 7.8− 3.94− 1.5 = 2.36 ans.
On obtient donc :

∆t′SSV2019,envoi = ∆t′ + ∆t′attente = 3 + 2.36 = 5.36 ans (7)

On peut donc appliquer maintenant la transformation de Lorentz pour revenir dans R. On
garde en tête que R s’éloigne toujours de R′ à la vitesse v même lorsque SSV2019 est à l’arrêt
vers Proxima (voir dernier schéma figure ci-après). On a donc :

∆tSSV2019,envoi = γ

(
∆t′SSV2019,envoi −

v2

c2
∆t′attente

)
= 1.73×(5.36−0.81×0.81×2.36) ' 6.6 ans

(8)

et finalement on obtient :

∆tinfo = ∆tSSV2019,envoi + ∆tSSV2019,mes. = 6.6 + 4.24 = 10.84 ans. (9)
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Exercice 2 25 points

Au pied d’un immeuble de 50 étages (2.5m/étage) se trouve une piscine de surface (10 m × 1.5
m) et de profondeur 3 m remplie d’eau liquide à 0◦C sur une hauteur de 2 m sauf les 2 premiers
centimètres qui forment une couche de glace également à 0◦C. On veut faire fondre la glace et
augmenter la température de l’eau. Pour cela vous disposez d’un bloc d’aluminium de masse 5000
kg et dont la température est égale à 650◦C.

a) 8 points Vous lâchez le bloc d’aluminium du toit de l’immeuble. Quelle sera la température
finale Tfinale de l’eau une fois l’équilibre thermique atteint ?

b) 6 points En considérant que la loi de Dulong-Petit s’applique au bloc d’aluminium, comment
changerait la température finale ? Justifiez qualitativement votre réponse.

c) 11 points On se place dans la situation à la fin de la question a). Un locataire souhaite une
température d’eau à 25◦C. Pour y arriver, il envisage de jeter dans la piscine, depuis une
hauteur h, 100 kg d’aluminium sous forme liquide à la température de fusion de l’aluminium
Tf,alu.. A l’équilibre thermique, le locataire veut que tout l’aluminium soit à l’état solide et
l’eau à l’état liquide. Calculez h. Commentez votre résultat.

Indications : On néglige les échanges de chaleur avec l’environement. On fait l’approximation que
les propriétés thermiques de l’eau et de l’aluminium ne changent pas avec la température. Supposez
que toute l’énergie cinétique du bloc est donnée au système glace-eau et n’est pas utilisée pour
rompre la couche de glace. Masse volumique de l’eau ρeau ' 1000 kg m−3. Masse volumique de la
glace ρglace = 917 kg m−3. Chaleur latente de fusion de la glace à 0°C : Lf = 333.6 kJ kg−1. Chaleur
spécifique à volume constant de l’eau liquide : ceau ' 4186 J kg−1 K−1. Chaleur spécifique à volume
constant de la glace à 0℃ : cglace ' 2110 J kg−1 K−1. Chaleur latente de fusion de l’aluminium :
Lf,alu. = 335 kJ kg−1. Chaleur spécifique à volume constant de l’aluminium : calu. ' 900 J kg−1 K−1.
Température de fusion de l’aluminium : Tf,alu. = 660◦C. Masse molaire de l’aluminium : 27 g/mol.
Constante des gaz parfaits : R = 8.314 J mol−1 K−1.

Corrigé

a)
Qalu +Qeau−gla = 0

−malug|h|+malucalu (Tfinale − Tinit,alu)︸ ︷︷ ︸
Chaleur perdue par l′aluminium (<0)

+VglaceρglaceLf +meauceau (Tfinale − Tinit,eau)︸ ︷︷ ︸
Chaleur gagnee par eau+glace (>0)

= 0,

où Vglace est le volume occupé par la glace et meau = V ρeau la masse totale de l’eau une fois
que toute la glace a fondu.
On peut isoler Tfinale :

Tfinale =
malugh− VglaceρglaceLf +malucaluTinit,alu

malucalu + V ρeauceau

. (10)

Application numérique :
La masse de l’eau liquide vaut meau = V ρeau = (10× 1.5× 2)× 1000 = 3× 104kg.

Tfinale =
5000× 9.81× 50× 2.5− 10× 1.5× 0.02× 917× 333.6× 103 + 5000× 900× 650

5000× 900 + 3× 104 × 4186

' 22◦C.
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b) La loi de Dulong-Petit stipule qu’à haute température, la capacité thermique molaire CV de
tout solide tend vers la valeur CV = 3R où R est la constante des gaz parfaits.

Cette loi peut se comprendre en utilisant l’approche microscopique. Dans un solide, les atomes
sont arrangés en un réseau cristallin. L’énergie emmagasinée dans un réseau cristallin corres-
pond à l’énergie d’agitation des atomes du réseau autour de leur position d’équilibre. Chaque
atome qui vibre a 6 degrés de liberté (3 de translation, 3 de rotation). Pour chaque atome,
à chaque degré de liberté correspond kBT/2 joules. Pour une mole de solide avec une masse
molaire M , on a donc une chaleur Q = 3NAkBT avec nombre NA le nombre d’Avogadro. Or
R = NAkB, donc Q = 3RT et ainsi cV = 3R/M .
Application numérique :

cV =
3× 8.314

27× 10−3
= 923 Jk−1K−1.

Etant donnée que cV augmente légèrement, la température finale sera un peu plus élevée.

c) Pour avoir de l’eau liquide et l’aluminium solide à l’équilibre thermique, tout l’aluminium
versé, doit se solidifier, donc l’énergie mise à disposition par l’aluminium liquide est :

Ealu = m′alu (gh+ Lf,alu − calu (Tfinale,2 − Tf,alu)) ,

où m′alu est la masse d’aluminium versée. L’énergie dont a besoin la piscine (eau et bloc
d’aluminium solide) pour augmenter sa température jusqu’à Tfinale,2 = 25◦C s’écrit :

Episcine = (meauceau +malucalu) (Tfinale,2 − Tfinale) ,

où Tfinale est la température finale de la question a).
Par la conservation de l’énergie Ealu = Episcine :

h =
1

g

(
(meauceau +malucalu)

m′alu

(Tfinale,2 − Tinit,piscine) + calu (Tfinale,2 − Tf,alu)− Lf,alu

)
.

(11)
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Application numérique :

h =
1

9.81

(
(3× 104 × 4186 + 5000× 900)

100
(25− 22) + 900 (25− 660)− 335× 103

)
' 3× 105m!!!

Cette valeur est evidemment irréalisable. Ceci démontre qu’il n’est pas efficace de réchauffer
de l’eau en utilisant un métal fondu. Tout ceci étant dû au fait que l’eau est un très grand
réservoir de chaleur, en effet sa capacité thermique est très élévée par rapport à l’aluminium.
En général c’est l’eau qui est utilisée pour refroidir les métaux fondus.

8



Exercice 3 25 points

La pression atmosphérique p(z) varie avec l’altitude z selon la relation

p(z) ' p0 (1− Cz)5 ,

où p0 = 101325 Pa est la pression au niveau de la mer, z est l’altitude en mètres, et C = 2.25577×10−5

m−1. Ceci va vous être utile pour votre expédition jusqu’au sommet de l’Everest (zE = 8848 m,
TE = −28◦C) ! Vous partez depuis le niveau de la mer (z = 0) avec une bouteille d’oxygène à la
pression pB,0 = 200 bar et la température T0 = 20 ◦C. Vous utiliserez cette bouteille seulement
lorsque le sommet sera atteint. On suppose que la bouteille et l’oxygène sont toujours en équilibre
thermique.

a) 4 points Quelle est la pression de l’oxygène à l’intérieur de la bouteille au sommet de l’Everest
(z = zE), une fois que l’équilibre thermique entre la bouteille avec l’oxygène et l’extérieur est
atteint ?

b) 7 points On suppose maintenant que vous êtes arrivés au sommet de l’Everest. En sachant
que votre corps peut supporter des températures aussi extrêmes pendant au maximum 10
minutes (∆tmax = 10 min), et que, durant une respiration, il a besoin de 2 litres d’oxygène au
rythme de 12 respirations par minute, quel doit-être le volume minimal de la bouteille, VB,
afin de vous assurer un temps maximum au sommet ?

c) 7 points Calculer la chaleur échangée ∆Q entre la bouteille avec l’oxygène et l’extérieur lors
de votre ascension vers le sommet de l’Everest. On supposera que la bouteille a une volume
constant VB, négligeant ainsi la dilatation de la bouteille due au changement de température.

d) 7 points On suppose une bouteille cylindrique de hauteur L=1 m. Calculez le temps moyen
que met une molécule pour traverser la bouteille dans sa longueur au niveau de la mer puis
au sommet de l’Everest.

Indication : L’oxygène est un gaz idéal diatomique avec degrés de liberté translationnel et rota-
tionnel. Constante de Boltzmann kB = 1.38 × 10−23 m2 kg s−2 K−1. Masse molaire de l’oxygène
M = 16 g mol−1.

Corrigé

a) Afin de déterminer la pression de l’oxygène à l’intérieur de la bouteille au sommet de l’Everest
(z = zE), on utilise la relation des gaz parfaits. Comme la bouteille est un système fermé,
c’est-à-dire que la quantité de moles de gaz est conservée durant l’ascension, on a que

p

T
= nR,

avec n = N/V la concentration molaire de gaz dans la bouteille. En évaluant l’équation
précédente en z = 0 et z = zE, on obtient que

pB,0
T0

=
pE
TE
⇒ pE =

TE
T0

pB,0. (12)

Par application numérique, on trouve

pE =
245.15K

293.15 K
× 200 bar = 167.25 bar.

b) On veut déterminer le volume de la bouteille, VB, nécessaire pour rester un temps maximal
de ∆tmax = 10 min au sommet de l’Everest. Pour cela, on suppose que notre corps respire
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au rythme de 12 respirations de 2 L d’oxygène à pression ambiante par minute. Le volume
d’oxygène, VO2 , nécessaire pour un temps ∆tmax est donc

VO2 = 2× 10−3 × 12×∆tmax = 0.24 m3.

On calcule maintenant le volume occupé, V ′, par l’oxygène une fois libéré de la bouteille.
L’oxygène est initialement à une pression pE et occupe le volume total de la bouteille VB.
Au cours de l’expansion, le gaz reste en équilibre thermique. Cela correspond donc à une
expansion isothermal. On peut écrire que

pEVB = p(zE)V ′ ⇒ VB =
p(zE)

pE
V ′.

En égalisant VO2 et le volume après expansion V ′, on peut résoudre pour le volume de la
bouteille VB,

VB =
p(zE)

pE
VO2 . (13)

Par application numérique, on trouve

VB =
p(8848)× 10−5 bar

167.25 bar
× 0.24m3 ' 4.78× 10−4 m3.

c) On s’intéresse à la variation de chaleur ∆Q entre l’oxygène contenu dans la bouteille lors de
son ascension vers le somment. Comme on s’intéresse à la variation de la chaleur à volume
constant, c’est-à-dire à une transformation isochore à VB donc pas de travail (W = 0 ),
la variation de chaleur ∆Q est donnée par le premier principe :

∆U = Q− W︸︷︷︸
=0

⇒ ∆U = Q avec ∆U = NcV ∆T ⇒ Q = NcV ∆T, (14)

avec la chaleur spécifique molaire à volume constant cV = (5/2)R = 20.785 J mol−1 K−1 pour
un gaz diatomique. Le nombre de moles d’oxygène contenu dans la bouteille est

N =
P0,BVB
RT0

=
200× 105Pa× 4.78× 10−4 m3

8.314Jmol−1K−1 × 293.15K
' 3.9225 mol.

Par application numérique, on trouve

∆Q = Ncv (TE − T0) = 0.02 mol× 5

2
R× (245.15 K− 293.15 K) = −3.91× 103 J < 0.

d) Afin de calculer le temps ∆t que met une molécule de O2 pour parcourir la hauteur L = 1 m de
la bouteille cylindrique, il faut déterminer la vitesse quadratique moyenne dans la direction de
l’axe de la bouteille, c’est-à-dire v2

z . Pour une température T , la vitesse moyenne quadratique
est

v2 = 3
kBT

mO2

,

où kB = R/NA est la constante de Boltzmann et mO2 est la masse d’une molécule d’oxygène.
On en déduit que
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v2
z =

1

3
v2 =

kBT

mO2

.

Ainsi, le temps ∆t que met une molécule d’oxygène pour parcourir une distance L est simple-
ment donné par

∆t =
L√
v2
z

= L

√
mO2NA

RT
.

Par application numérique, au niveau de la mer, c’est-à-dire en z = 0, avec T = 293.15 K et
mO2NA = 2× 16× 10−3 kg mol −1 pour l’oxygène, on obtient

a∆t(z = 0) = 1 m×

√
2× 16× 10−3 kg mol−1

8.314 J mol−1 K−1 × 293.15 K
,' 0.0036s (15)

et, au sommet de l’Everest en z = zE,

∆t(z = zE) = 1 m×

√
2× 16× 10−3 kg mol−1

8.314 J mol−1 K−1 × 245.15 K
' 0.004s. (16)
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Exercice 4 25 points

2 moles de di-hydrogène (H2), considéré comme un gaz parfait, se trouvent à la température ini-
tiale de TA = 3000◦C et la pression pA = 100 bars et occupent un volume VA. Ce gaz subit les 4
transformations suivantes :

A→ B Expansion adiabatique jusqu’à TB = 1500◦C.
B → C Expansion adiabatique jusqu’à VC = 2VB.
C → D Compression isobare jusqu’à VD = VA
D → A Transformation isochore.
a)5 points Dessinez le cycle dans un diagramme p− V .
b)7points Calculez pour chaque transformation la chaleur échangée.
c)11 points Calculez le travail total effectué au cours du cycle.
d)2 points Calculez le rendement de ce cycle.

Indication : Constante des gaz parfaits : R = 8.314 J mol−1 K−1. En dessous de 1500◦C, on négligera
les effets vibrationels. 1 bar = 105 Pa.

Corrigé

La subtilité de l’exercice est que l’index adiabatique de la transformation A→ B n’est pas le même
que celui de la transformation B → C. En effet, le nombre de degrés de liberté des molécules dépend
de la température :

γA→B = 1 +
2

ν
= 1 +

2

7
=

9

7
et γB→C = 1 +

2

ν
= 1 +

2

5
=

7

5

a) γB→C > γA→B donc la courbe BC doit être ”au dessous” de la courbe AB si celle-ci était
prolongée au delà de B. Les 2 autres transformations ne posent pas de problèmes.

A

B

D
C

V

pB

pA

p

QDA

QCD

pD = pC

VD = VAVB VC
p [Pa] V [m3] T [K]

A 100× 105 VA = nRTA
pA

=0.0054 3273

B pA

(
VA
VB

)γA→B
' 6.4× 105 VA

(
TA
TB

) 1
γA→B−1 ' 0.046 1773

C nRTC
VC
' 2.4× 105 2VB = 0.092 TB

(
VB
VC

)γB→C−1

' 1328

D pC VA
pCVA
nR
' 78
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b) Transformation adiabatique AB :
Par définition, il n’y a pas d’échange de chaleur lors d’une transformation adiabatique on a
donc : QA→B = 0.
On calcule le travail entre A et B, avec γ = γA→B :

WA→B =

∫ VB

VA

pdV = pAV
γ
A

∫ VB

VA

V −γdV

= pAV
γ
A

1

1− γ
(
V 1−γ
B − V 1−γ

A

)
=
pAVA
1− γ

((
TB
TA

)
− 1

)
(17)

' 87 kJ.

Alors : ∆UAB = −WAB = −87 kJ.
Trasformation adiabatique BC :

Par définition, il n’y a pas d’échange de chaleur lors d’unee transformation adiabatique. Alors :
QBC = 0.
On calcule le travail entre B et C, avec γ = γB→C :

WB→C =

∫ VC

VB

pdV = pBV
γ
B

∫ VC

VB

V −γdV

= pBV
γ
B

1

1− γ
(
V 1−γ
C − V 1−γ

B

)
=
pBVB
1− γ

((
VC
VB

)1−γ

− 1

)
(18)

' 18 kJ.

Alors : ∆UBC = −WBC = −18 kJ.

Transformation isobare CD :
On calcule le travail, la variation d’énergie interne et la chaleur échangée entre C et D :

WC→D =

∫ VD

VC

pdV = pC(VD − VC) ' −21 kJ. (19)

∆UCD = ncv∆T = n

(
5

2
R

)
∆T ' −52 kJ. (20)

QCD = ∆UCD +WCD = −52 + (−20) = −73 J. (21)

Transformation isochore DA :
Par définition, il n’y a pas de travail lors d’une transformation isochore. Alors : WD→A = 0.
On calcule la chaleur échangée entre D et A :

QDA = ∆UDA = −∆UABCD = −∆UAB −∆UBC −∆UCD = 88 + 18 + 52 = 158 kJ (22)

c) Le travail total est :

Wcycle = WA→B +WB→C +WC→D +WD→A = 88 + 18− 21 + 0 = 81 kJ. (23)

On trouve un travail positif. C’est donc bien un moteur.
d) Le rendement de cycle est :
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η =
Wcycle

QDA

=
81

158
' 0.53. (24)

Méthode alternative :
Une alternative pour calculer le travail lors des transformations adiabatiques A → B et B → C
consiste à évaluer directement la variation de l’énergie interne en faisant attention à utiliser les
chaleurs spécifiques corrigées selon les degrés de libertés

WA→B = −∆UA→B = −ncV (TB − TA) = −n× 7

2
×R× (TB − TA) ' 88 kJ

WB→C = −∆UB→C = −ncV (TC − TB) = −n× 5

2
×R× (TC − TB) ' 18 kJ.

En plus, la chaleur QD→A peut être calculée en tenant compte de l’activation des degrés de vibration
à Tvib = 1500◦C comme

QD→A = QD→E +QE→A =
5

2
R(Tvib − TD) +

7

2
R(TA − Tvib) ' 158 kJ

où E est le point sur la transformation D → A à la température Tvib.
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