Test mi-semestre de physique générale II — Section SV Prof. Furno

18 Avril 2024

Exercice 1 - Eruption solaire (25 points)

Dans cet exercice, traitez le Soleil, la Terre (immobile dans le référentiel du Soleil), I’ensemble des
particules émises par l’éruption solaire, et le vaisseau comme des points matériels. On définit V" le
référentiel attaché au vaisseau, P’ le référentiel attaché aux particules de 1’éruption solaire, et S le
référentiel attaché au Soleil. Tous les référentiels sont inertiels.

Une éruption solaire émet des particules vers la Terre sur 1'axe Soleil-Terre. Dans le réf. P, la Terre se
rapproche a une vitesse v}, = —0.8c.

a) En sachant que la distance Soleil-Terre mesurée dans le réf. P’ est dgp = 10" m, quelle est la
distance Soleil-Terre mesurée dans le réf. S7

b) Quelle est la distance Soleil-particules dgp dans le réf. S quand un intervalle de temps Aty = 100
s (dans le réf. P’) s’est écoulé depuis I’éruption solaire 7

Quand les particules se trouvent a la distance dgp calculée au point b), un vaisseau qui voyage vers la
Terre sur I'axe Soleil-Terre (avec une vitesse vy = 0.5¢ mesurée dans le réf. S) se trouve entre le Soleil et
la Terre a une distance de la Terre dyr = 10! m (mesurée dans le réf. ).

c) Combien de temps At{, reste-t-il dans le réf. V" avant que les particules arrivent a la méme position
que le vaisseau ?

d) Quel est U'intervalle de temps mesuré dans le référentiel V" entre les deux évenements :
A) éruption solaire;
B) particules qui arrivent a la méme position que le vaisseau ;

Un scientifique du vaisseau décide de lancer un atome d’hélium avec vy, = 1.3 (mesuré dans S) vers le
Soleil pour observer une collision avec une particule de 1’éruption solaire qui voyage vers le vaisseau.

e) En sachant que I’énergie cinétique relativiste totale de ’atome d’hélium et de la particule de 1'érup-
tion solaire avant la collision est K, ror = 2 x 1071 J (par rapport au ref. S), quelle est la masse
de la particule qui entre en collision avec celle d’hélium lancée depuis le vaisseau ?

Le capitaine du vaisseau a l'idée suivante : utiliser une partie des particules pour se faire pousser et ainsi
augmenter la vitesse du vaisseau et réduire le temps du voyage vers la Terre (via une collision inélastique,
dans laquelle le vaisseau et les particules ont la méme vitesse apres la collision).

f) Si une masse de particules égale a 1% de celle du vaisseau entre en collision avec le vaisseau, de
combien est réduit le temps de voyage (en %) dans le réf. S, a partir du moment de la collision ?

Indications : vitesse de la lumiére ¢ = 3-10® m/s. La masse atomique de I'atome d’hélium est mpy, =
6.67-107%7 kg.

Corrigé

a) (4 points)
Si la Terre se déplace a une vitesse —v/. dans le réf. P’; ceci implique que P’ se déplace a une vitesse

vp = —(—v}) = 0.8¢ dans le réf. S, ce qui permet de calculer :
2\ —1
vp = ( — U—g’) =(V1-0.82)"! ~1.67 (1)
c
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FIGURE 1 — Schéma pour la question a)
La distance Soleil-Terre dans le réf. P’ est contractée par rapport a celle dans le réf. S (ou il s’agit
d’une longueur propre) :

dsr = dsryp = 10" m x 1.67 ~ 1.7-10" m

(2)
b) (4 points)
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FIGURE 2 — Schéma pour la question b)

L’intervalle de temps Aty mesuré dans le réf P’ est un intervalle de temps propre. Ceci correspond
a un intervalle de temps Atg dans le réf. S donné par :

Atg = Atlyyp = 100s x 1.67 ~ 167s (3)

Ce qui nous permet de calculer la distance parcourue par les particules depuis I'éruption dans le
réf. S

dsp = vpAty ~ 0.8 x 3-10°m/s x 167s ~ 4-10"m
c¢) (5 points)

La distance dpy est donnée par :

(4)

dpy = dsp — dsp — dyr ~ (1.7-10" —4-10"° = 10")m ~ 2.7- 10" m

()

Dans le réf. S, le temps qui reste avant la collision Ats peut étre calculé en posant la condition
suivante :

d 2.7-1010
vpAtec = dpy + vy At =  Ate = PV o

~ 206 6
(vp —vy)  (0.8—0.5) x 3-105m/s s (6)
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FIGURE 3 — Schéma pour la question c)

Cet intervalle de temps mesuré dans le réf. V" (Atf.) est un intervalle de temps propre. On obtient :

-1

Ate 296 -
At = —C_ 5~ 256s avec Ay = ( — U—V) = (\/1 — 0.52> ~ 1.16 (7)

Méthode alternative : dans le référentiel V"

Comme spécifié au cours, il est possible de résoudre cet exercice quel que soit le référentiel choisi.
Ici, la résolution dans V" est significativement plus complexe mais reste possible, comme montré
ci-dessous.

La subtilité est que dans V", le moment "quand les particules se trouvent a une distance dgp” n’est
pas simultané a 1’événement "quand le vaisseau se trouve a une distance dyr”. En effet, ce sont
deux événements simultanés dans S mais pas dans les autres référentiels. On doit donc distinguer
3 événements :

A. Distance Soleil-Particules = dgp dans S (au temps t4), de coordonnée (z'y, t}) dans V.
B. Distance Terre-Vaisseau = dyr dans S (au temps tp = t4), de coordonnée (2, t7;) dans V.
C. P et V sont a la méme position au temps t¢, de coordonnée (0, t7,) dans V.

Pour savoir quel est le temps (ou quelle est la distance) entre les événements dans V”, il faut
connaitre leur ordre. On calcule alors Aty ;. Dans S, At,p = 0, mais comme les positions sont
différentes dans V", il faut appliquer Lorentz
U, AT 4R dpy

My = [Btan = 22548 ] — 0, 222 0
On voit que ce temps est négatif! Dans V", les événements sont donc pergus dans 'ordre B. — A.
— C. Le schéma ci-dessous aide & visualiser les événements dans le référentiel V" (Figure |4]).
La démarche a suivre pour trouver Aty est donc la suivante : calculer Ax” et Ax”) 5 puis les diviser

par v%, la vitesse des particules vues dans V.
La distance Az” est donnée par

d
Az" = |vp. At p| = U%W”V% (9)

La distance Az’j 5 est ensuite trouvée grace aux transformées de Lorentz

VAL
A'erB =Yv [AI’AB — TAB:| = ’}/vdpv (10)
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FIGURE 4 — Résolution dans V"

Notez ici que x4p = dpy et que t4p = 0.
La distance totale parcourue par les particules dans V” est donc donnée par Az” + Az’yz. On
obtient finalement At} en calculant

Ax 1 v
"o tot \4
A BC = T = ”}/VdPV (E -+ ?) (11)

avec vp = (vp — vy)/(1 — #5%2). En substituant I'expression de v, on retombe bien sur la méme
relation qu’aux équations (6) et (7), & savoir

" dpy
Al =5 fon — ) -
(5 points)
Il faut d’abord définir les deux évenements, avec leur coordonnées temporelles et spatiales :
- A(t A, L A)
— B (t B, T B)
En utilisant les transformations de Lorentz, on obtient :

A 0.5 x 3-10°8 1.1-101
$AB) —1.16 {4638— X m/s

AtZXB =Y <AtAB — Vy 2 (3 108 m/s)2 ~ 321s (13)

avec
AtAB :AtE—i-AtC ~ 463 s AQZ’AB :dsp—l-dpv—{—’l)vAth 111011m (14)

(3 points) L’énergie cinétique relativiste de la particule d’hélium lancée depuis le vaisseau est donnée
par :

Krel,He - (fYHe - 1>'rnHeC2 (15)
Celle de la particule X de I’éruption solaire qui rentre en collision est :
vy -
Krax = (yx — D)mxc® avec Tx = ( - g) (16)

En sachant d’énergie cinétique relativiste totale K, ror, nous pouvons écrire :
Krel,TOT = Krel,He + Krel,X - (’YH@ - ]-)TnHeC2 + (’YX - 1)mX62 (17)

et donc : )
Krearor — (Yae — 1)mpec

(vx — 1)c?

=3.4-10 kg (18)

my =

4



f) (4 points)
Puisqu’il y a une collision inélastique, nous pouvons appliquer la conservation de la quantité de
mouvement entre les particules et le vaisseau, avant et apres la collision, dans S :

YPMpPUP + YWMy,Vy = Vv, My, Vy; (19)
En utilisant l'information que mp = 0.01my,, ’équation peut étre réduites a :
my; (0.01ypvp + v vv) = v, (1.01my; Juy, (20)

avec laquelle on peut obtenir

1.012 1171
vy, = {\/( +—=| =~0.505¢ (21)

0.01yvpvp +yyov)? 2

Les temps de voyage avant et apres la collision, avec une distance a parcourir D, sont :

D D
AZfvoy-i = E Atvoy-f = ; (22>
i f

7

La réduction du temps du voyage en S est donnée par :

Atyoyi = Atyoys vy, (D D\ _ (vy; —vy)  0.005¢
vy, 0.505¢

~ 1% (23)

AZfvoy—i D Vy; UVf

Exercice 2 - Cylindre et piston (25 points)

Un récipient cylindrique isolé thermiquement contient 1 mole de gaz parfait monoatomique. Le récipient est
fermé par un piston (également isolé thermiquement) de masse négligeable et de section A = 400 cm?, qui
peut coulisser sans frottement dans la direction de ’axe du cylindre. Le cylindre est posé verticalement. A
I’état initial, une masse m = 200 kg est posée sur le piston tel que le systeme gaz + piston est a ’équilibre
mécanique. La pression atmosphérique externe est de 1 bar. A Détat initial, la température du gaz est de
146 °C. La masse m est instantanément enlevée du piston, créant ainsi une situation hors équilibre. Le
piston se déplace en effectuant une transformation irréversible jusqu’a un nouvel équilibre mécanique (état
final).
a) Quel est le volume occupé par le gaz dans 1’état initial 7
b) Calculez le volume et la température du gaz dans I’état final.
c) Sile gaz dans le récipient était diatomique, la température a 1’état final serait-elle plus ou moins
élevée que celle calculée au point b) 7 Justifiez votre réponse avec une équation.
d) A Tétat final correspondant au point b), calculez le temps quadratique moyen qu’'une molécule
d’oxygene met pour traverser le cylindre depuis la base jusqu’au piston.
Indications : Masse moléculaire de 'oxygene mo, ~ 5.3-1072¢ kg. Constante universelle des gaz parfaits
R =8.31 J/mol/K. Accélération gravitationnelle g = 9.81 m/s?.

Corrigé

a) (5 points)
La résultante des forces sur le piston a I’état initial est nulle (puisque le systeme est a I’équilibre
mécanique), donc la force sur le piston a U'intérieur du cylindre doit étre égale a la force a I'extérieur.

mg

Mg + Patm - A =p;- A Di = 7+patm (24)
RT;
pVi = nRT, V= (25)
Di



Application numérique :

200 kg x 9.81 m/s?

pi 001 2 +10° Pa = 1.49-10° Pa (26)
1 mol x 831 J/K mol x 419 K

V; = = 0.023 m®. 27

1.49-10° Pa o (27)

b) (10 points) La pression finale a l'intérieur du cylindre est égale a la pression atmosphérique puisqu’a
I’état final le systeme est a 1’équilibre mécanique :

Py = Datm- (28)

L’expansion est adiabatique puisque le systeme est isolé thermiquement, mais comme l’expansion
est rapide (hors équilibre) elle est irréversible. Pour répondre a la question on ne peut donc pas
utiliser la formule pV7 = const (valable uniquement pour une adiabatique réversible), mais on doit
utiliser le premier principe, qui est toujours valable. Donc, en utilisant le premier principe :

AU =Q—-W. (29)
Comme le cylindre est parfaitement isolé thermiquement, () = 0
conAT = W. (30)

Le travail effectué par le systeme correspond a la force résultante pA multipliée par la distance Ah
parcourue par le piston :
W = pfAAh = pf(Vf — V;) (31)

Nous obtenons, avec la loi des gaz parfaits, 2 équations et 2 inconnues (V, T%)
pf(Vf — %) = —cvn(Tf — ,—Tz) et prf = nRTf (32)

En combinant les deux équations, on obtient

nRT
con(Ty = T0) = (=~ = V7). (33)
Dy
On substitue ¢, = v/2R
~ psVi+v/2RnT; (34)

I v/2Rn +nR

pour un gaz monoatomique v = 3 (v est le nombre de dégrées de liberté)

Vi

T, = 3/5T; 35

RT
V= (36)

by

Application numérique
3 10° Pa x 0.023 m?
Ty = - x419 K ~ 364 K 37
1= T 5/2 % 1 mol x 831 J/K/mol (37)
_ 1 mol x 831 J/K/mol x 364 K 3

= 10" Pa = 0.030 m (38)



¢) (5 points)
Pour un gaz diatomique v =5

En partant de 'équation [34], on obtient :

ja%
7/2nR

Ty = 5/7T; + (40)

Application numérique

5 105 Pa x 0.023 m?
Ty = - x419K ~ 380 K 41
=7 T 772 % 1 mol x 8.31 /K /mol (41)
d) (5 points) En partant d’une distribution de Maxwell des vitesses des molécules, on sait que la vitesse

quadratique moyenne :

3k, T
Vrms = iy (42)
m

Pour obtenir le temps, on utilise la distance a parcourir d, étant la hauteur du cylindre dans 1’état

final : p v

f
t = = . 43
Urms AUT'mS ( )

Application numérique :
3x1.38-107%3J/K x 364 K
— = 44
VUrms \/ 53.10-26 kg 537 m/s ( )
0.030 m?

f - — 0.0014s. (45)

~ 0.04 m? x 537 m/s

Exercice 3 - Cycle Thermodynamique (25 points)

Un cycle thermodynamique, composé des quatre transformations suivantes considérées comme réversibles,
est effectué par 100 moles d'un gaz parfait monoatomique :

1) A = B : expansion isobare depuis [p4 = 10° Pa, V4 = 1 m3] jusqu’a Vp = 2 m3,
2) B = C : transformation isochore jusqu’a pc = 10° Pa.
3) C = D : transformation isobare.

4) D = A : transformation isotherme.

Les états A, B, C et D sont des états d’équilibre.
a) Calculez les valeurs (T, p, V') des états A, B, C, D. Ensuite, tracez le cycle dans un diagramme p—V
en indiquant le sens dans lequel chaque transformation est parcourue.
b) Calculez le travail et la chaleur échangée lors de chaque transformation 1), 2), 3), 4), ainsi que pour
le cycle complet.
Lors de la transformation 4), la chaleur est échangée uniquement avec une barre métallique avec coefficient
de dilatation linéaire o = 2- 1076 °C~! et masse M., = 1 kg.
c) A chaque cycle, la barre se dilate-t-elle ou se contracte-t-elle 7 Justifiez votre réponse.
d) En sachant qu’apres 1 cycle la barre a modifié sa longueur de 2%, calculer la chaleur spécifique
massique de la barre.
Lors de la transformation 3), la chaleur est échangée uniquement avec du Nickel liquide de masse 5 kg qui
se trouve a la température initiale de 2250 K quand le gaz se trouve dans I’état C.



e) A la fin de la transformation 3), le Nickel s’est-il chauffé ou refroidit 7 Y-a-t il eu une transformation
de phase 7 Si oui, quelle est la masse du Nickel liquide & la fin de la transformation 3) 7
Indications : Chaleur latente de fusion de Nickel Ly; = 298 kJ kg=!. Chaleur spécifique massique du Nickel
liquide cy; = 663 J kg™'K~!. Température de fusion du Nickel T;_y; = 1455°C. Constante universelle des
gaz parfaits R = 8.31 J/mol/K.

Corrigé

a) (5 points) Pour tracer le cycle, nous devons d’abord trouver le volume au point D. On peut le
trouver a partir de la loi des gaz parfaits pour la transformation isotherme D = A :
P A 3 106 Pa

AV 4 »Vp =>Vp Va Py m- X 10° Pa

=10 m®. (46)

Le température peuvent étre obtenues a partir des valeurs de p et V' de chaque état d’équilibre :

pAVA 106 Pa x 1m3
Tp =Ty = = ~ 1203K A7
b nR ~ 100mol x 8.31 J/mol/K (47)
pBVB 106 Pa x 2m?
Ty = = ~ 2408 K 48
BT R 100mol x 8.31J/mol/K (48)
10° Pa x 2m?
T, = PVe _ 0"Pa x2m ~ 241 K (49)

nR  100mol x 8.31J/mol/K

Nous pouvons donc résumer les valeurs p, V, T :

| Al B[C]D |
P [Pa] | 10° | 10° | 10° | 10°
Vimd | 1 2 | 2 | 10
T [K] || 1203 | 2408 | 241 | 1203

Connaissant toutes les valeurs, on peut tracer le diagramme 3| :

P

Pa

10° |- A7

sl S
e D

T2 5 Vo

m

FIGURE 5 — Schéma pour la question a)

b) (8 points) Pour retrouver la chaleur échangée, il faut retrouver le travail et I’évolution de ’énergie
interne. Pour chaque transformation du cycle les calculs sont les suivants :

1) Expansion isobare A = B :
On calcule le travail et ’énergie interne :

Ve
Wap = / pdV =pa(Vs — Vi) =10°Pax (2 —1)m® = 10°J, (50)
Va



AUyp = gnRTB - gnRTA = ; x 100 mol x 8.31J/mol/K x (2408 — 1203) K = 1.5-10°J, (51)

Alinsi,
Qap = Wap + AUyp = 2.5-10°J. (52)
2) Transformation isochore B = C : Puisque la variation de volume est nulle, le travail est égale-
ment nul :
Wpe = 0. (53)
Et I'énergie interne est calculée par :
3 3 3
AUge = §nRTC — §nRTB =5 X 100mol x 8.31J /mol /K x (241 —2408) K = —2.7-10° J. (54)
On obtient la chaleur dans cette transformation :
Qpc = Wae + AUpe = —2.7-10°J. (55)
3) Transformation isobare C = D : Le calcul est identique a la transformation A = B :
Vb
Wep = / pdV = pc(Vp — Vi) = 10° Pa x (10 — 2) m* = 8-10° J, (56)
Ve

3 3 3
AUcp = 5nRTp — SnRTe = 5 x 100mol x 8.31J /mol /K x (1203 — 241) K = 12-10°J. (57)

On obtient la chaleur :

Qcp = Wep + AUcp =2-10° . (58)
4) Transformation isotherme D = A : Le travail est calculé par :
v Y4 PpV V.
Wpa :/ pdV :/ DD av = PpVplog (—A> = (59)
VD VD V VD
. 1 X
= 10°Pa x 10m?® x log (E) =—-2.3-10°7, (60)

ou nous avons utilisé la loi des gaz parfaits dans le cas de lisotherme PpVp = PV. Puisque
I’énergie interne est proportionnelle au changement de température et que la température est la
méme, 1’énergie interne est nulle :

AUps = 0. (61)
Alinsi,
Qpa=Wpa+ AUps = —2.3-10°J. (62)
Finalement, la chaleur totale échangée et le travail pour le cycle complet sont :
Qcycle = chcle = QAB + QBC’ + QCD + QDA =-05- 106J (63)

Le signe négatif indique que de la chaleur et le travail sont générés par le cycle, le processus agit
donc comme un réfrigérateur. Les sens de chauffe sont indiqués sur un schéma [0
¢) (3 points) La chaleur reque par le gaz est la chaleur apportée par le barre métallique, soit :

Qbarre = _QDA- (64)

Donc, si Qpa < 0, cela signifie que Qparre > 0.
Si nous utilisons des équations pour la chaleur échangée et la dilatation thermique avec m la masse
de la barre métallique : Q = mcAT, Al = aloAT, on obtient une équation pour un changement

relatif de longueur :
Al Q

= 7 = — Wharre- 65
¢ lo chb (65)

Ainsi, puisque Qperre > 0 nous pouvons voir que € > 0 aussi. Donc, la barre va se dilater.
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FIGURE 6 — Schéma pour la question b)

d) (2 points) Pour le calcul, il suffit de réorganiser I’équation (65| :

« 2-107 K1 x2.3-10°J J
= — Wbarre = =230——.
€= et kg x 0.02 Ve K (66)

e) (7 points) De maniére analogue a la question c), nous pouvons écrire :

Qni = —Qcp, (67)

ou on voit Qcp > 0 et Qpn; < 0. Ainsi, parce que ATy; = m%VCN, on a ATy; < 0 ce qui signifie que
le nickel va se refroidir.

Pour vérifier s’il y aura une transition de phase, nous devons comparer la quantité de chaleur
nécessaire pour réduire la température du nickel (@) jusqu’au point de fusion avec la chaleur
fournie au bain :

Q1 = myicniATn; = 5kg x 663J K kg™ x (2250 — 1728) K = 1.73-10° J. (68)

ou cy; est chaleur spécifique massique du Nickel liquide en phase liquide. Puisque Qy; est plus
grand que @1, il y aura une transition de phase et la chaleur excédentaire (Q)2) sera utilisée pour
solidifier une partie du nickel liquide. Pour trouver la masse, nous pouvons utiliser :

Q2 = Qni — Q1 = My solide LNi, (69)
étant Ly; la chaleur latente de fusion du Nickel. Ainsi,

Q> (2-10°—1.73-10°)J
Lyi  2.98-105]/kg

MNi solide = =0.91 kg (7())

Et enfin la masse du nickel liquide : my; jiquigze = (5 — 0.91) kg = 4.19 kg.
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