
Test mi-semestre de physique générale II – Section SV Prof. Furno

18 Avril 2024

Exercice 1 - Éruption solaire (25 points)

Dans cet exercice, traitez le Soleil, la Terre (immobile dans le référentiel du Soleil), l’ensemble des
particules émises par l’éruption solaire, et le vaisseau comme des points matériels. On définit V ′′ le
référentiel attaché au vaisseau, P ′ le référentiel attaché aux particules de l’éruption solaire, et S le
référentiel attaché au Soleil. Tous les référentiels sont inertiels.

Une éruption solaire émet des particules vers la Terre sur l’axe Soleil-Terre. Dans le réf. P ′, la Terre se
rapproche à une vitesse v′T = −0.8c.

a) En sachant que la distance Soleil-Terre mesurée dans le réf. P ′ est d′ST = 1011 m, quelle est la
distance Soleil-Terre mesurée dans le réf. S ?

b) Quelle est la distance Soleil-particules dSP dans le réf. S quand un intervalle de temps ∆t′E = 100
s (dans le réf. P ′) s’est écoulé depuis l’éruption solaire ?

Quand les particules se trouvent à la distance dSP calculée au point b), un vaisseau qui voyage vers la
Terre sur l’axe Soleil-Terre (avec une vitesse vV = 0.5c mesurée dans le réf. S) se trouve entre le Soleil et
la Terre à une distance de la Terre dV T = 1011 m (mesurée dans le réf. S).

c) Combien de temps ∆t′′C reste-t-il dans le réf. V ′′ avant que les particules arrivent à la même position
que le vaisseau ?

d) Quel est l’intervalle de temps mesuré dans le référentiel V ′′ entre les deux évènements :
A) éruption solaire ;
B) particules qui arrivent à la même position que le vaisseau ;

Un scientifique du vaisseau décide de lancer un atome d’hélium avec γHe = 1.3 (mesuré dans S) vers le
Soleil pour observer une collision avec une particule de l’éruption solaire qui voyage vers le vaisseau.

e) En sachant que l’énergie cinétique relativiste totale de l’atome d’hélium et de la particule de l’érup-
tion solaire avant la collision est Krel,TOT = 2× 10−10 J (par rapport au ref. S), quelle est la masse
de la particule qui entre en collision avec celle d’hélium lancée depuis le vaisseau ?

Le capitaine du vaisseau a l’idée suivante : utiliser une partie des particules pour se faire pousser et ainsi
augmenter la vitesse du vaisseau et réduire le temps du voyage vers la Terre (via une collision inélastique,
dans laquelle le vaisseau et les particules ont la même vitesse après la collision).

f) Si une masse de particules égale à 1% de celle du vaisseau entre en collision avec le vaisseau, de
combien est réduit le temps de voyage (en %) dans le réf. S, à partir du moment de la collision ?

Indications : vitesse de la lumière c = 3 · 108 m/s. La masse atomique de l’atome d’hélium est mHe =
6.67 · 10−27 kg.

Corrigé

a) (4 points)
Si la Terre se déplace à une vitesse −v′T dans le réf. P ′, ceci implique que P ′ se déplace à une vitesse
vP = −(−v′T ) = 0.8c dans le réf. S, ce qui permet de calculer :

γP =

(√
1− v2P

c2

)−1

= (
√
1− 0.82)−1 ≃ 1.67 (1)
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Figure 1 – Schéma pour la question a)

La distance Soleil-Terre dans le réf. P ′ est contractée par rapport à celle dans le réf. S (où il s’agit
d’une longueur propre) :

dST = d′STγP = 1011m× 1.67 ≃ 1.7 · 1011m (2)

b) (4 points)

Figure 2 – Schéma pour la question b)

L’intervalle de temps ∆t′E mesuré dans le réf P ′ est un intervalle de temps propre. Ceci correspond
à un intervalle de temps ∆tE dans le réf. S donné par :

∆tE = ∆t′EγP = 100 s× 1.67 ≃ 167 s (3)

Ce qui nous permet de calculer la distance parcourue par les particules depuis l’éruption dans le
réf. S :

dSP = vP∆tE ≃ 0.8× 3 · 108m/s× 167 s ≃ 4 · 1010m (4)

c) (5 points)
La distance dPV est donnée par :

dPV = dST − dSP − dV T ≃ (1.7 · 1011 − 4 · 1010 − 1011)m ≃ 2.7 · 1010m (5)

Dans le réf. S, le temps qui reste avant la collision ∆tC peut être calculé en posant la condition
suivante :

vP∆tC = dPV + vV∆tC ⇒ ∆tC =
dPV

(vP − vV )
=

2.7 · 1010m
(0.8− 0.5)× 3 · 108m/s

≃ 296 s (6)

Cet intervalle de temps mesuré dans le réf. V ′′ (∆t′′C) est un intervalle de temps propre. On obtient :

∆t′′C =
∆tC
γV

=
296 s

1.16
≃ 256 s avec γV =

(√
1− v2V

c2

)−1

=

(√
1− 0.52

)−1

≃ 1.16 (7)
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Figure 3 – Schéma pour la question c)

d) (5 points)
Il faut d’abord définir les deux évènements, avec leur coordonnées temporelles et spatiales :
— A(tA, xA)
— B(tB, xB)
En utilisant les transformations de Lorentz, on obtient :

∆t′′AB = γV

(
∆tAB − vV

∆xAB

c2

)
= 1.16

[
463 s− 0.5× 3 · 108m/s× 1.1 · 1010

(3 · 108m/s)2

]
≃ 321 s (8)

avec
∆tAB = ∆tE +∆tC ≃ 463 s ∆xAB = dSP + dPV + vV∆tc ≃ 1.1 · 1011m (9)

e) (3 points) L’énergie cinétique relativiste de la particule d’hélium lancée depuis le vaisseau est donnée
par :

Krel,He = (γHe − 1)mHec
2 (10)

Celle de la particule X de l’éruption solaire qui rentre en collision est :

Krel,X = (γX − 1)mXc
2 avec γX =

(√
1− v2P

c2

)−1

(11)

En sachant d’énergie cinétique relativiste totale Krel,TOT , nous pouvons écrire :

Krel,TOT = Krel,He +Krel,X = (γHe − 1)mHec
2 + (γX − 1)mXc

2 (12)

et donc :

mX =
Krel,TOT − (γHe − 1)mHec

2

(γX − 1)c2
= 3.4 · 10−28 kg (13)

f) (4 points)
Puisqu’il y a une collision inélastique, nous pouvons appliquer la conservation de la quantité de
mouvement entre les particules et le vaisseau, avant et après la collision, dans S :

γPmPvP + γVmVi
vV = γVf

mVf
vVf

(14)

En utilisant l’information que mP = 0.01mV , l’équation peut être réduites à :

mVi
(0.01γPvP + γV vV ) = γVf

(1.01mVi
)vVf

(15)

avec laquelle on peut obtenir

vVf
=

[√
1.012

(0.01γPvP + γV vV )2
+

1

c2

]−1

≃ 0.505c (16)
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Les temps de voyage avant et après la collision, avec une distance à parcourir D, sont :

∆tvoy-i =
D

vVi

∆tvoy-f =
D

vVf

(17)

La réduction du temps du voyage en S est donnée par :

∆tvoy-i −∆tvoy-f
∆tvoy-i

=
vVi

D

(
D

vVi

− D

vVf

)
=

(vVf
− vVi

)

vVf

=
0.005c

0.505c
≃ 1% (18)

Exercice 2 - Cylindre et piston (25 points)

Un récipient cylindrique isolé thermiquement contient 1 môle de gaz parfait monoatomique. Le récipient est
fermé par un piston (également isolé thermiquement) de masse négligeable et de section A = 400 cm2, qui
peut coulisser sans frottement dans la direction de l’axe du cylindre. Le cylindre est posé verticalement. À
l’état initial, une masse m = 200 kg est posée sur le piston tel que le système gaz + piston est à l’équilibre
mécanique. La pression atmosphérique externe est de 1 bar. À l’état initial, la température du gaz est de
146 ◦C. La masse m est instantanément enlevée du piston, créant ainsi une situation hors équilibre. Le
piston se déplace en effectuant une transformation irréversible jusqu’à un nouvel équilibre mécanique (état
final).

a) Quel est le volume occupé par le gaz dans l’état initial ?
b) Calculez le volume et la température du gaz dans l’état final.
c) Si le gaz dans le récipient était diatomique, la température à l’état final serait-elle plus ou moins

élevée que celle calculée au point b) ? Justifiez votre réponse avec une équation.
d) A l’état final correspondant au point b), calculez le temps quadratique moyen qu’une molécule

d’oxygène met pour traverser le cylindre depuis la base jusqu’au piston.
Indications : Masse moléculaire de l’oxygène mO2 ≃ 5.3 · 10−26 kg. Constante universelle des gaz parfaits
R = 8.31 J/mol/K. Accélération gravitationnelle g = 9.81 m/s2.

Corrigé

a) (5 points)
La résultante des forces sur le piston à l’état initial est nulle (puisque le système est à l’équilibre
mécanique), donc la force sur le piston à l’intérieur du cylindre doit être égale à la force à l’extérieur.

mg + patm ·A = pi ·A pi =
mg

A
+ patm (19)

piVi = nRTi Vi =
nRTi

pi
. (20)

Application numérique :

pi =
200 kg× 9.81 m/s2

0.04 m2
+ 105 Pa = 1.49 · 105 Pa (21)

Vi =
1 mol × 8.31 J/K mol× 419 K

1.49 · 105 Pa
= 0.023 m3. (22)

b) (10 points) La pression finale à l’intérieur du cylindre est égale à la pression atmosphérique puisqu’à
l’état final le système est à l’équilibre mécanique :

pf = patm. (23)

L’expansion est adiabatique puisque le système est isolé thermiquement, mais comme l’expansion
est rapide (hors équilibre) elle est irréversible. Pour répondre à la question on ne peut donc pas
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utiliser la formule pV γ = const (valable uniquement pour une adiabatique réversible), mais on doit
utiliser le premier principe, qui est toujours valable. Donc, en utilisant le premier principe :

∆U = Q−W. (24)

Comme le cylindre est parfaitement isolé thermiquement, Q = 0

cvn∆T = W. (25)

Le travail effectué par le système correspond à la force résultante pA multipliée par la distance ∆h
parcourue par le piston :

W = pfA∆h = pf (Vf − Vi) (26)

Nous obtenons, avec la loi des gaz parfaits, 2 équations et 2 inconnues (Vf , Tf )

pf (Vf − Vi) = −cvn(Tf − Ti) et pfVf = nRTf (27)

En combinant les deux équations, on obtient

cvn(Tf − Ti) = pf
(nRTf

pf
− Vi

)
. (28)

On substitue cv = ν/2R

Tf =
pfVi + υ/2RnTi

υ/2Rn+ nR
(29)

pour un gaz monoatomique ν = 3 (ν est le nombre de dégrées de liberté)

Tf = 3/5Ti +
pfVi

5/2nR
(30)

Vf =
nRTf

pf
(31)

Application numérique

Tf =
3

5
× 419 K +

105 Pa × 0.023 m3

5/2× 1 mol× 8.31 J/K/mol
≃ 364 K (32)

Vf =
1 mol× 8.31 J/K/mol× 364 K

105 Pa
= 0.030 m3 (33)

c) (5 points)
Pour un gaz diatomique ν = 5

cv =
5

2
R (34)

En partant de l’équation 29, on obtient :

Tf = 5/7Ti +
pfVi

7/2nR
(35)

Application numérique

Tf =
5

7
× 419K +

105 Pa× 0.023 m3

7/2× 1 mol× 8.31 J/K/mol
≃ 380 K (36)
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d) (5 points) En partant d’une distribution de Maxwell des vitesses des molécules, on sait que la vitesse
quadratique moyenne :

vrms =

√
3kbT

m
. (37)

Pour obtenir le temps, on utilise la distance à parcourir d, étant la hauteur du cylindre dans l’état
final :

t =
d

vrms

=
Vf

Avrms

. (38)

Application numérique :

vrms =

√
3× 1.38 · 10−23J/K× 364 K

5.3 · 10−26 kg
= 537m/s (39)

t =
0.030 m3

0.04 m2 × 537 m/s
= 0.0014s. (40)

Exercice 3 - Cycle Thermodynamique (25 points)

Un cycle thermodynamique, composé des quatre transformations suivantes considérées comme réversibles,
est effectué par 100 môles d’un gaz parfait monoatomique :

1) A ⇒ B : expansion isobare depuis [pA = 106 Pa, VA = 1 m3] jusqu’à VB = 2 m3,

2) B ⇒ C : transformation isochore jusqu’à pC = 105 Pa.

3) C ⇒ D : transformation isobare.

4) D ⇒ A : transformation isotherme.

Les états A, B, C et D sont des états d’équilibre.
a) Calculez les valeurs (T, p, V ) des états A, B, C, D. Ensuite, tracez le cycle dans un diagramme p−V

en indiquant le sens dans lequel chaque transformation est parcourue.
b) Calculez le travail et la chaleur échangée lors de chaque transformation 1), 2), 3), 4), ainsi que pour

le cycle complet.
Lors de la transformation 4), la chaleur est échangée uniquement avec une barre métallique avec coefficient
de dilatation linéaire α = 2 · 10−6 oC−1 et masse mbar = 1 kg.

c) À chaque cycle, la barre se dilate-t-elle ou se contracte-t-elle ? Justifiez votre réponse.
d) En sachant qu’après 1 cycle la barre a modifié sa longueur de 2%, calculer la chaleur spécifique

massique de la barre.
Lors de la transformation 3), la chaleur est échangée uniquement avec du Nickel liquide de masse 5 kg qui
se trouve à la température initiale de 2250 K quand le gaz se trouve dans l’état C.

e) A la fin de la transformation 3), le Nickel s’est-il chauffé ou refroidit ? Y-a-t il eu une transformation
de phase ? Si oui, quelle est la masse du Nickel liquide à la fin de la transformation 3) ?

Indications : Chaleur latente de fusion de Nickel LNi = 298 kJ kg−1. Chaleur spécifique massique du Nickel
liquide cNi = 663 J kg−1K−1. Température de fusion du Nickel Tf−Ni = 1455◦C. Constante universelle des
gaz parfaits R = 8.31 J/mol/K.

Corrigé

a) (5 points) Pour tracer le cycle, nous devons d’abord trouver le volume au point D. On peut le
trouver à partir de la loi des gaz parfaits pour la transformation isotherme D ⇒ A :

PAVA = PDVD => VD = VA
PA

PD

= 1m3 × 106 Pa

105 Pa
= 10 m3. (41)
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Le température peuvent être obtenues à partir des valeurs de p et V de chaque état d’équilibre :

TD = TA =
pAVA

nR
=

106 Pa× 1m3

100mol× 8.31 J/mol/K
≃ 1203K (42)

TB =
pBVB

nR
=

106 Pa× 2m3

100mol× 8.31 J/mol/K
≃ 2408K (43)

TC =
pCVC

nR
=

105 Pa× 2m3

100mol× 8.31 J/mol/K
≃ 241K (44)

Nous pouvons donc résumer les valeurs p, V, T :

A B C D

P [Pa] 106 106 105 105

V [m3] 1 2 2 10
T [K] 1203 2408 241 1203

Connaissant toutes les valeurs, on peut tracer le diagramme 4 :

Figure 4 – Schéma pour la question a)

b) (8 points) Pour retrouver la chaleur échangée, il faut retrouver le travail et l’évolution de l’énergie
interne. Pour chaque transformation du cycle les calculs sont les suivants :

1) Expansion isobare A ⇒ B :
On calcule le travail et l’énergie interne :

WAB =

∫ VB

VA

pdV = pA(VB − VA) = 106 Pa× (2− 1)m3 = 106 J, (45)

∆UAB =
3

2
nRTB − 3

2
nRTA =

3

2
× 100mol× 8.31J/mol/K× (2408− 1203)K = 1.5 · 106 J, (46)

Ainsi,
QAB = WAB +∆UAB = 2.5 · 106 J. (47)

2) Transformation isochore B ⇒ C : Puisque la variation de volume est nulle, le travail est égale-
ment nul :

WBC = 0. (48)

Et l’énergie interne est calculée par :

∆UBC =
3

2
nRTC − 3

2
nRTB =

3

2
× 100mol× 8.31J/mol/K× (241− 2408)K = −2.7 · 106 J. (49)

On obtient la chaleur dans cette transformation :

QBC = WBC +∆UBC = −2.7 · 106 J. (50)
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3) Transformation isobare C ⇒ D : Le calcul est identique à la transformation A ⇒ B :

WCD =

∫ VD

VC

pdV = pC(VD − VC) = 105 Pa× (10− 2)m3 = 8 · 105 J, (51)

∆UCD =
3

2
nRTD − 3

2
nRTC =

3

2
× 100mol× 8.31J/mol/K× (1203− 241)K = 12 · 105 J. (52)

On obtient la chaleur :
QCD = WCD +∆UCD = 2 · 106 J. (53)

4) Transformation isotherme D ⇒ A : Le travail est calculé par :

WDA =

∫ VA

VD

pdV =

∫ VA

VD

PDVD

V
dV = PDVD log

(
VA

VD

)
= (54)

= 105 Pa× 10m3 × log

(
1

10

)
= −2.3 · 106 J, (55)

où nous avons utilisé la loi des gaz parfaits dans le cas de l’isotherme PDVD = PV . Puisque
l’énergie interne est proportionnelle au changement de température et que la température est la
même, l’énergie interne est nulle :

∆UDA = 0. (56)

Ainsi,
QDA = WDA +∆UDA = −2.3 · 106 J. (57)

Finalement, la chaleur totale échangée et le travail pour le cycle complet sont :

Qcycle = Wcycle = QAB +QBC +QCD +QDA = −0.5 · 106J. (58)

Le signe négatif indique que de la chaleur et le travail sont générés par le cycle, le processus agit
donc comme un réfrigérateur. Les sens de chauffe sont indiqués sur un schéma 5.

Figure 5 – Schéma pour la question b)

c) (3 points) La chaleur reçue par le gaz est la chaleur apportée par le barre métallique, soit :

Qbarre = −QDA. (59)

Donc, si QDA < 0, cela signifie que Qbarre > 0.
Si nous utilisons des équations pour la chaleur échangée et la dilatation thermique avec m la masse
de la barre métallique : Q = mc∆T, ∆l = αl0∆T, on obtient une équation pour un changement
relatif de longueur :

ϵ =
∆l

l0
=

α

mc
Qbarre. (60)

Ainsi, puisque Qbarre > 0 nous pouvons voir que ϵ > 0 aussi. Donc, la barre va se dilater.
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d) (2 points) Pour le calcul, il suffit de réorganiser l’équation 60 :

c =
α

mϵ
Qbarre =

2 · 10−6K−1 × 2.3 · 106 J
1 kg× 0.02

= 230
J

kg ·K
. (61)

e) (7 points) De manière analogue à la question c), nous pouvons écrire :

QNi = −QCD, (62)

où on voit QCD > 0 et QNi < 0. Ainsi, parce que ∆TNi =
QNi

mNicNi
, on a ∆TNi < 0 ce qui signifie que

le nickel va se refroidir.
Pour vérifier s’il y aura une transition de phase, nous devons comparer la quantité de chaleur
nécessaire pour réduire la température du nickel (Q1) jusqu’au point de fusion avec la chaleur
fournie au bain :

Q1 = mNicNi∆TNi = 5kg× 663 J K kg−1 × (2250− 1728)K = 1.73 · 106 J. (63)

où cNi est chaleur spécifique massique du Nickel liquide en phase liquide. Puisque QNi est plus
grand que Q1, il y aura une transition de phase et la chaleur excédentaire (Q2) sera utilisée pour
solidifier une partie du nickel liquide. Pour trouver la masse, nous pouvons utiliser :

Q2 = QNi −Q1 = mNi,solideLNi, (64)

étant LNi la chaleur latente de fusion du Nickel. Ainsi,

mNi,solide =
Q2

LNi

=
(2 · 106 − 1.73 · 106) J

2.98 · 105 J/kg
= 0.91 kg. (65)

Et enfin la masse du nickel liquide : mNi,liquide = (5− 0.91) kg = 4.19 kg.
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