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4 Statistical thermodynamics I: Kinetic Gas Theory

4.1 Microscopic view of temperature

In this section, we try to describe the equation of the state of gas from the microscopic
view, i.e. as an ensemble of particles with an identical mass moving in random directions
isotropically in container (see figure below). We assume that there is no interaction between
the particle and the wall of the container, containing the gas, nor between the particles
themselves. When a particle collides with the wall or with other particles, it makes an
elastic scattering.

The gas is in a cubic container, as shown in the figure. The pressure, P, of the gas act-
ing on the container wall is caused by the elastic scattering of the gas molecules with the wall.

Let us consider first that there is only one gas molecule in the container. The force acting
on the wall A by the molecule through the elastic scattering can be given by

Ap
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where Ap is the momentum change of the molecule within the time interval At. In the
scattering process, only the x-component of the velocity changes from v, to —v, and the
time interval to have one scattering corresponding to the time needed to traverse for the
molecule from A to B and back to A. It follows that
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The force onto the wall is then
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Now we consider the case, where we have a large number of N molecules within the container.
The force then becomes: N
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By introducing the average of v2, given by
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the force given by
F= T‘” (7)

Recalling v2 + vg +v2 = v?, it follows that
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If the movement of the gas molecules is random and isotropic, (v2) = (v2) = (v2), we have
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By denoting the area of the wall A to be S, the pressure is given by
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where V is the volume of the container. It follows that
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where (K) = £m(v?) is the average of the kinetic energy of the gas molecule. By comparing

this to the equation of the state for the ideal gas,
PV = NET. (13)

we can conclude 3
(K) = §I<:T (14)

i.e. the average kinetic energy of the molecule of an ideal gas is directly proportional to the
absolute temperature.



Examples:

4.2

What is the average kinetic energy of an ideal gas molecule at 37°C?
Noting that 37°C' is 310K, we obtain

(K) = ;kT = %1.38 x 1073 J/K x 310K = 6.42 x 10721 (15)

For one mole of molecules, the kinetic energy becomes

NA(K) =6.02 x 1072 x 6.42 x 1072*.J = 3860.J ~ 1kcal (16)

How fast are molecules (O; and N2) moving at room T?
The root-mean-squared velocity of an ideal gas molecule at an absolute temperature

T is then given by
2(K 3kT
tons = VT = = )

The root-mean-squared velocity of Oy (molecular mass 32 u) and N3 (molecular mass
28 u) at 37°C can be calculated using the above equation. Since 1 u corresponds to
1.66 x 10727kg, the masses of one molecule for them are given by

m(0z) = 32-1.66 x 107*"kg = 5.3 x 10~ *°kg

18
m(Ny) = 28-1.66 x 107*kg = 4.6 x 10™%kg (18)
and
3kT 3.1.38 x 10-23.J/ K.293K
Urms(O2) = \/m(OQ) - \/ 5.3 x 10~20kg = 480m/s
(19)
3kT 3.1.38 x 10-23.J/ K.293K
Vpms (N2) = \/m(NQ) = \/ 1.6 x 10-25hg =510m/s

Note that the lighter a gas molecule is, the faster it moves at a same temperature.

Special Exercise I: Two subsystems of ideal gas

An isolated system of volume Vj consists of two subsystems, labelled 1 and 2, separated by
an impermeable (no particle flow) and moving diathermal (exchange of heat) wall of mass M
and of negligible volume. Both subsystems contain ideal gas. Initially, both subsystems are
at the temperature 7T;. Subsystem 1 is in a state characterised by a volume V7; and Pressure

Py;. Likewise, subsystem 2 is characterised by a pressure P»; and volume V5;. When the
system has reached equilibrium the final temperature is equal to the initial temperature.
Determine:

1. The number of moles n; and ny of in both subsystems.

2.

The final volumes Vif and Vay of the subsystems when the system has reached equi-
librium.

The final pressure Py when the system has reached equilibrium.



4. The kinetic energy of the subsystem and the total system in equilibrium.
Solution:
1. Since the wall is impermeable, the numbers of moles are constant. Thus:
— PV, and no — Po;Va;
' RT, > "RT

2. Given that the wall is movable, in equilibrium, not only the temperatures will be the
same, but also the pressure P. Owing to the equation of state for each subsystem, also
in the final state, we have:

Pf‘flf = TllRTf and Pf‘/gf = ngRTf
Similarly, the equation of state for the entire system in the final state is given by:
Pf‘/b = (n1 + ’I’Lg)RTf
with Vo being the sum of the subvolumes. Solving this equation for P; and inserting
the expression in the equation of state of each subsystem, we obtain the final volumes:
ni n2
Vifp=——VW and Voy = ——V
1 n1 + ng 0 2 n1 + Ng 0
3. The final pressure is given by:
(n1+ nz)RTf
Pp=-—7——
Vo
It is the pressure of gas of n1 + ny moles at temperature Ty occupying the volume Vj
of the whole system.

4. According the kinetic theory of gas, the average kinetic energy of ideal gas is only de-
pendent on the temperature of the gas. Since the final temperature in the two subsystem
is the same, also the average kinetic energy (per molecule) is the same:

3
(K1) = (K2) = SkTy
Since the kinetic energy is an extensive quantity (additive), the kinetic energy of the
whole system is:
3 .
K= ’I’LlNA<K1> + n2NA<K2> = (n1 + n2)NA<K> = §(n1 + ng)RTf (Wlth R= k‘NA)
4.3 Special exercise II: Atmosphere composition on planets

1. The escape velocity on Mars is 5 km/s and the temperature on its surface is 0°C.

Compute for this temperature v,.,,,s of Ho, O2 and COs. If v, is greater than roughly
one sixth of the escape velocity, then the gas will not be retained in the atmosphere of
the planet. Which of the listed gases will remain in the Mars atmosphere under this
condition?



2. Repeat the same analysis for Jupiter; note that its escape velocity is 60 km/s and its
surface temperature is -150°C.

3. The escape velocity of planet earth with Radius R (6378km) can be calculated via
ve = v/2gR, where g is the acceleration on earth.

(a) At which temperature is v,,s of Oy and of Hs equal to the escape velocity on
earth?

(b) In the upper atmosphere is the temperature is the temperature roughly 1000K.
What does this imply on the existence of oxygen in the upper atmosphere?

(c) Compute the temperatures, for which v,.,s of Oz and Hs is equal to the escape
velocity on the moon, which has an acceleration of roughly one sixth of that on
earth (the radius of the moon is 1738 km). Why does the moon not have an
atmosphere (assume for simplicity that the T on the moon is similar as in the
upper atmosphere of the earth)?

Solution:

1. Vpms 18 given by \/3kT/m. T is 2738 K. The masses of Ha, Oy and COy are mpy, =
2 x 1.7-107%"kg, mo, = 32 x 1.7-107%"kg and mco, = 44 x 1.7-10"%2"kg. Thus:

Vpms,Hy = 1846 m/3, Upms,0, =461 M/S, Vrms,co, = 393 m/s.

One sizth of the escape velocity on Mars is 833 m/s. Thus, Oz and COs ezist in the
atmosphere of Mars, but no Hydrogen.

2. The calculation is the same as in 1., but now for a temperature of T = 123.15 K.
Inserting the masses and the temperature into the expression for vyms, we obtain:

Urms,Hy = 1239 m/$S, Urms.0, = 310 m/s, Vrms.co, = 264 m/s.

One sizth of the escape velocity of Jupiter is 10* m/s. Thus, for Jupiter all of the
considered gases can be in its atmosphere.

2
3. If we solve the above expression of Vyms for T, we obtain: T = %

(a) On earth is v2,,, = v2 = 2gR. with R. being the radius of the earth. Thus, we
obtain for T:
2mgR.
3k
Using the values for the masses of oxygen and hydrogen as written above, we
obtain T =1.6-10°K and T = 1.0 - 10*K for oxygen and hydrogen, respectively,
at which the rms velocity is equal to the escape velocity.

T =

(b) For oxygen, the temperature in the upper atmosphere is too low so that oxygen
molecules do not have a high enough kinetic energy/average velocity to leave.

(c) On the moon, g = 9.81/6 m/s*, and with its radius R,, = 1738 km, we can
compute the escape velocity v, = 2.38 - 103 m/s. With the same equation as
before, we can estimate the temperate for which v,.ms of hydrogen and oxygen is
equal to the escape velocity. For hydrogen and oxygen, we obtain T ~ 7.3-10% K
and ~ 460 K. If we assume that the temperature on the moon is similar to that of
the upper earth atmosphere (1000K), then it is clear that that both gases cannot
be retained by the gravity field of the moon.



