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4 Statistical thermodynamics I: Kinetic Gas Theory

4.1 Microscopic view of temperature

In this section, we try to describe the equation of the state of gas from the microscopic
view, i.e. as an ensemble of particles with an identical mass moving in random directions
isotropically in container (see figure below). We assume that there is no interaction between
the particle and the wall of the container, containing the gas, nor between the particles
themselves. When a particle collides with the wall or with other particles, it makes an
elastic scattering.

The gas is in a cubic container, as shown in the figure. The pressure, P , of the gas act-
ing on the container wall is caused by the elastic scattering of the gas molecules with the wall.

Let us consider first that there is only one gas molecule in the container. The force acting
on the wall A by the molecule through the elastic scattering can be given by

∆p

∆t
(1)

where ∆p is the momentum change of the molecule within the time interval ∆t. In the
scattering process, only the x-component of the velocity changes from vx to −vx and the
time interval to have one scattering corresponding to the time needed to traverse for the
molecule from A to B and back to A. It follows that

∆p = −mvx −mvx = −2mvx, ∆t =
2l

vx
(2)

leading to
∆p

∆t
=
−2mvx
2l/vx

= −mv2x
l

(3)
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The force onto the wall is then

F =
mv2x
l

. (4)

Now we consider the case, where we have a large number of N molecules within the container.
The force then becomes:

F =
m
∑N

i=1(vix)2

l
. (5)

By introducing the average of v2x, given by

〈v2x〉 =

∑N
i=1(vix)2

N
(6)

the force given by

F =
Nm〈v2x〉

l
(7)

Recalling v2x + v2y + v2z = v2, it follows that

〈v2〉 =
1

N

N∑
i=1

[
(vix)2 + (viy)2 + (viz)2

]
=

1

N

(
N∑
i=1

(vix)2 +

N∑
i=1

(viy)2 +

N∑
i=1

(viz)2

)
= 〈v2x〉+ 〈v2y〉+ 〈v2z〉

(8)

If the movement of the gas molecules is random and isotropic, 〈v2x〉 = 〈v2y〉 = 〈v2z〉, we have

〈v2x〉 =
〈v2〉

3
(9)

and

F =
Nm〈v2〉

3l
. (10)

By denoting the area of the wall A to be S, the pressure is given by

P =
F

S
=

Nm〈v2〉
3lS

=
Nm〈v2〉

3V
(11)

where V is the volume of the container. It follows that

PV =
2

3
N

(
1

2
m〈v2〉

)
=

2

3
N〈K〉 (12)

where 〈K〉 = 1
2m〈v

2〉 is the average of the kinetic energy of the gas molecule. By comparing
this to the equation of the state for the ideal gas,

PV = NkT. (13)

we can conclude

〈K〉 =
3

2
kT (14)

i.e. the average kinetic energy of the molecule of an ideal gas is directly proportional to the
absolute temperature.
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Examples:

• What is the average kinetic energy of an ideal gas molecule at 37◦C?
Noting that 37◦C is 310K, we obtain

〈K〉 =
3

2
kT =

3

2
1.38× 10−23J/K × 310K = 6.42× 10−21J (15)

For one mole of molecules, the kinetic energy becomes

NA〈K〉 = 6.02× 10−23 × 6.42× 10−21J = 3860J ≈ 1kcal (16)

• How fast are molecules (O2 and N2) moving at room T?
The root-mean-squared velocity of an ideal gas molecule at an absolute temperature
T is then given by

vrms =
√
〈v2〉 =

√
2〈K〉
m

=

√
3kT

m
. (17)

The root-mean-squared velocity of O2 (molecular mass 32 u) and N2 (molecular mass
28 u) at 37◦C can be calculated using the above equation. Since 1 u corresponds to
1.66× 10−27kg, the masses of one molecule for them are given by

m(O2) = 32 · 1.66× 10−27kg = 5.3× 10−26kg

m(N2) = 28 · 1.66× 10−27kg = 4.6× 10−26kg
(18)

and

vrms(O2) =

√
3kT

m(O2)
=

√
3.1.38× 10−23J/K.293K

5.3× 10−26kg
= 480m/s

vrms(N2) =

√
3kT

m(N2)
=

√
3.1.38× 10−23J/K.293K

4.6× 10−26kg
= 510m/s

(19)

Note that the lighter a gas molecule is, the faster it moves at a same temperature.

4.2 Special Exercise I: Two subsystems of ideal gas

An isolated system of volume V0 consists of two subsystems, labelled 1 and 2, separated by
an impermeable (no particle flow) and moving diathermal (exchange of heat) wall of mass M
and of negligible volume. Both subsystems contain ideal gas. Initially, both subsystems are
at the temperature Ti. Subsystem 1 is in a state characterised by a volume V1i and Pressure
P1i. Likewise, subsystem 2 is characterised by a pressure P2i and volume V2i. When the
system has reached equilibrium the final temperature is equal to the initial temperature.
Determine:

1. The number of moles n1 and n2 of in both subsystems.

2. The final volumes V1f and V2f of the subsystems when the system has reached equi-
librium.

3. The final pressure Pf when the system has reached equilibrium.
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4. The kinetic energy of the subsystem and the total system in equilibrium.

Solution:

1. Since the wall is impermeable, the numbers of moles are constant. Thus:

n1 =
P1iV1i

RTi
and n2 =

P2iV2i

RT2

2. Given that the wall is movable, in equilibrium, not only the temperatures will be the
same, but also the pressure P. Owing to the equation of state for each subsystem, also
in the final state, we have:

PfV1f = n1RTf and PfV2f = n2RTf

Similarly, the equation of state for the entire system in the final state is given by:

PfV0 = (n1 + n2)RTf

with V0 being the sum of the subvolumes. Solving this equation for Pf and inserting
the expression in the equation of state of each subsystem, we obtain the final volumes:

V1f =
n1

n1 + n2
V0 and V2f =

n2

n1 + n2
V0

3. The final pressure is given by:

Pf =
(n1 + n2)RTf

V0

It is the pressure of gas of n1 + n2 moles at temperature Tf occupying the volume V0

of the whole system.

4. According the kinetic theory of gas, the average kinetic energy of ideal gas is only de-
pendent on the temperature of the gas. Since the final temperature in the two subsystem
is the same, also the average kinetic energy (per molecule) is the same:

〈K1〉 = 〈K2〉 =
3

2
kTf

Since the kinetic energy is an extensive quantity (additive), the kinetic energy of the
whole system is:

K = n1NA〈K1〉+ n2NA〈K2〉 = (n1 + n2)NA〈K〉 =
3

2
(n1 + n2)RTf (with R = kNA)

4.3 Special exercise II: Atmosphere composition on planets

1. The escape velocity on Mars is 5 km/s and the temperature on its surface is 0◦C.
Compute for this temperature vrms of H2, O2 and CO2. If vrms is greater than roughly
one sixth of the escape velocity, then the gas will not be retained in the atmosphere of
the planet. Which of the listed gases will remain in the Mars atmosphere under this
condition?
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2. Repeat the same analysis for Jupiter; note that its escape velocity is 60 km/s and its
surface temperature is -150◦C.

3. The escape velocity of planet earth with Radius R (6378km) can be calculated via
ve =

√
2gR, where g is the acceleration on earth.

(a) At which temperature is vrms of O2 and of H2 equal to the escape velocity on
earth?

(b) In the upper atmosphere is the temperature is the temperature roughly 1000K.
What does this imply on the existence of oxygen in the upper atmosphere?

(c) Compute the temperatures, for which vrms of O2 and H2 is equal to the escape
velocity on the moon, which has an acceleration of roughly one sixth of that on
earth (the radius of the moon is 1738 km). Why does the moon not have an
atmosphere (assume for simplicity that the T on the moon is similar as in the
upper atmosphere of the earth)?

Solution:

1. vrms is given by
√

3kT/m. T is 273 K. The masses of H2, O2 and CO2 are mH2
=

2× 1.7 · 10−27kg, mO2 = 32× 1.7 · 10−27kg and mCO2 = 44× 1.7 · 10−27kg. Thus:

vrms,H2 = 1846 m/s, vrms,O2 = 461 m/s, vrms,CO2 = 393 m/s.

One sixth of the escape velocity on Mars is 833 m/s. Thus, O2 and CO2 exist in the
atmosphere of Mars, but no Hydrogen.

2. The calculation is the same as in 1., but now for a temperature of T = 123.15 K.
Inserting the masses and the temperature into the expression for vrms, we obtain:

vrms,H2
= 1239 m/s, vrms,O2

= 310 m/s, vrms,CO2
= 264 m/s.

One sixth of the escape velocity of Jupiter is 104 m/s. Thus, for Jupiter all of the
considered gases can be in its atmosphere.

3. If we solve the above expression of vrms for T, we obtain: T =
mv2

rms

3k .

(a) On earth is v2rms = v2e = 2gRe with Re being the radius of the earth. Thus, we
obtain for T:

T =
2mgRe

3k
.

Using the values for the masses of oxygen and hydrogen as written above, we
obtain T = 1.6 · 105K and T = 1.0 · 104K for oxygen and hydrogen, respectively,
at which the rms velocity is equal to the escape velocity.

(b) For oxygen, the temperature in the upper atmosphere is too low so that oxygen
molecules do not have a high enough kinetic energy/average velocity to leave.

(c) On the moon, g = 9.81/6 m/s2, and with its radius Rm = 1738 km, we can
compute the escape velocity vm = 2.38 · 103 m/s. With the same equation as
before, we can estimate the temperate for which vrms of hydrogen and oxygen is
equal to the escape velocity. For hydrogen and oxygen, we obtain T ∼ 7.3 · 103 K
and ∼ 460 K. If we assume that the temperature on the moon is similar to that of
the upper earth atmosphere (1000K), then it is clear that that both gases cannot
be retained by the gravity field of the moon.
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