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2 Temperature and the zeroth law of Thermodynamics

2.1 Temperature

Temperature: a measure of thermal energy
e Celsius: water freezing point = 0° C , boiling point = 100° C , equally divided by 100
e Fahrenheit: water freezing point = 32° F, boiling point = 212° F | divided by 180

e Kelvin: = 0° K = —273.15° C = —459.67° F, all thermal motion ceases in the classical
description of thermodynamics

When two objects with different temperatures are put into thermal contact, they will then
converge to the same temperature, meaning they will be in thermal equilibrium, i.e. there
will be no net transfer of thermal energy anymore (Note that the exact definition of thermal
energy will be given in Chapter 6).

2.2 Zeroth law of Thermodynamics

If two systems are in thermal equilibrium with a third system, then they are in
thermal equilibrium with each other.

Thermal Thermal
Equilibrium Equilibrium

Zeroth Law of
Thermodynamics

2.3 Applications: Thermal Expansion

Linear expansion:

The length of a solid generally increase with increasing temperature. The change in length
Al is, to a good approximation, directly proportional to the change in temperature AT, as
long as AT is not too large. Also, Al is proportional to the original length [,

To obtain equality in the above equation, we introduce the parameter «, which is called the
coefficient of linear expansion (Values for « of different materials are shown in Table 1.).



Material | Aluminium Bras Iron Lead Quartz
a(C)~ 1] 25x107% [19x1070 [ 12x 107 %[ 29%x107% [ 0.4 x 10~

Table 1: Numerical value of the coefficient of linear expansion

Let’s consider a system (such as iron rails) at an initial state of temperature T and the length
lp, reaching a final state of temperature T and the length [. The change in temperature and
length as well as the final length can be expressed as:

Al=1-1p, and AT =T —Tp, ie. I=Al+ 1y =algAT + 1o =lh(1 +aAT) (2)
An iron rail of 200 m long at 20° C, shrinks at —30° C by:
Al =12 x 1075(°C)™1(—=30 — 20)°C x 200m = —1.2 x 10~ ' m (3)
and expands at 40° C by:
Al =12 x 1075(°C) 71 (40 — 20)°C x 200m = 0.48 x 10~* m (4)
Thus, the total change of the length from 40° C to —30° C is:
048 x 107 'm +1.2x107'm =1.68 x 107! m (5)

Hence, you can open a tight jar of lid by pouring hot water as the diameter of a metal ring
gets larger.

Volume Expansion:
The volume of solid or liquid changes with a change of temperature as:
AV = BV,AT, (6)

where V{ is the initial volume. The parameter [ is called the coefficient of volume
expansion (Example values for different materials shown in Table. 2).

Material | Aluminium Bras Iron Lead Quartz Mercury | Ethyl Alcohol

BCH)T] 75x107% [ 56x1070 [ 35 x 107 % | 87 x 1076 [ 1 x 1076 [ 180 x 10=% | 1100 x 10~

Table 2: Numerical value of the coefficient of volume expansion

The value of g for liquids is much larger than for solids, which is why mercury and alcohol
are used in thermometers.
The volume can be given as the product of the three sides, i.e.

3
V =[]0+ AT = (14 aAT)?I31 = (1+ aAT)? V. (7)
i=1

For |aAT| <« 1, we have:

(14 aAT)? =14 3aAT + 3(aAT)? + ... ~ 1 + 3aAT, (8)



thus
V & (14 3aAT)V, (9)

or,

AV = 3aATV,, (10)

i.e. 8 = 3a. Indeed this is the case for the solids as shown in Tables 1 and 2.

Example:
A steel container of 1 m x1 m x1 m with an open top is filled with Mercury at 20° C. If
the temperature increases to 40° C, how much mercury will overflow the container?

The volume change of the container can be given by, i) same as the solid steel block, or ii)
from the length expansion of the three sides. Since 3a = 3, the two will lead to a similar
conclusion. We use here i) and the volume increase of the container is given by,

AVeont = BATVy = 35 x 1075(°C) ™! x (40 — 20)°C x 1m® = 0.0007m?>. (11)
Equally for the mercury, we obtain:

AVppere = BATVy = 180 x 1075(°C) ™1 x (40 — 20)°C x 1m® = 0.0036m?>.  (12)
Therefore, the amount of mercury overflows is,

AViere — AVeont = 0.0036 — 0.0007 = 0.0029m?> (13)

Precise formula for the length expansion

Let us denote [y to be the initial length of a bar. According to the formula of the linear
expansion, the length of the bar after increasing the temperature by AT, [, is given by:

I =Al+ lo = aloAT + lo = lo(]. + OZAT) (14)
where « is the coefficient of linear expansion. We now consider an expansion in two steps:

e Step-1 increase the temperature by %,

e Step-2 increase the temperature by another %.
After the Step-1, the length of the bar is given by:
AT
lstepfl = lo (1 + O[2> (15)
and after Step-2:
AT AT\?
lstepfg = lstepfl 1 + OKT = lO 1 + QT . (16)

If we consider n-steps to reach the temperature difference of AT by increasing the temper-
ature by % for the each step, the length of the bar after n-steps is given by:

AT\"
lstep—n = lo <1 + Oén) . (17)



A continuous transition is then obtained by increasing the number of steps to infinity, i.e.

AT\"
lcontineous = lim lO (1 + a) = lOGQAT' (18)

n—00 n

which is the exact expression for the length expansion.

By noting:

E

1
2T =1+ aAT + 5(@AT)2 + i

1
(@AT)? + E(aAT)4 +... (19)
we can conclude that the formula of the linear expansion is valid only if a|AT| < 1.

Anomalous behaviour of water

Normally, the volume of material increases with temperature, i.e. the density decreases as a
function of increasing temperature. Also the solid phase of a material has a higher density
than that at the liquid phase. The water has a very different behaviour. The density of
ice at the normal pressure decreases slightly with increasing temperature, i.e. at —180° C,
0.9340 g/cm?, and at 0° C, 0.9167 g/cm?®, which is similar behaviour to the usual material.
When it melts at 0° C, the liquid water has a density of 0.9998 g.cm?, higher than that
of the ice at the same temperature. This is why the ice floats in the liquid water. The
density of water increases (volume decreases) with increasing temperature, and it reaches
at its maximum at 4° C, 1.00 g/cm®. A further increase in the temperature decreases the
density (increases the volume) as for usual materials. — This is very important for life on
earth.

2.4 Applications: Thermal Stress

If the two ends of an iron beam are rigidly fixed, changes of temperature induce stress due
to the thermal expansion or contraction, referred to as thermal stress:

1. The iron beam tries to expand by Al = aATlj.
2. An external force, F, is required to push back the beam to stay with the same length.
The reduction of the length due to an external force is given by:

1F

Al = ==
P=gal

(20)

where F is Young’s module (specific for a material) and A is the transversal area of the
beam. Since this should compensate the thermal expansion, Al’ = Al,

1F

giving the thermal stress (pressure, as force per area) to be:

F
5 = 0BAT. (22)



Example:

Let us consider a concrete structure, like a beam of concrete supporting the motor way.
The Young’s module for concrete is 2 x 10!° N/m?, and the coefficient of linear expansion,
12 x 107%(° C)~!. For a 40 degrees temperature difference, the stress is given by:

F
- = 0BAT =12 % 1076(°C) 7! x 2 x 10'° x 40°C = 9.6 x 10° Nm 2 (23)

Noting the tensile strength, 2 x 10 N/m? (maximum pulling pressure before breaking), and
the compressive strength, 2 x 107 N/m?, for the concrete (maximum compression pressure
before breaking), it should not break for a 40° C temperature increase, but it would be safer
to have a gap between the beam and the fixation.

2.5 Special exercise: Breaking of Copper due to cooling

Let’s consider we heat a piece of copper pipe to 300°C and fasten it tightly at the ends so
that it can’t contract upon cooling. The tensile strength of copper is 230 MN/m?, and the
Yung’s modulus E for Copper is 110 GN/m?. At what temperature will the pipe break as
it cools down?

Solution: The length change Al that would occur upon cooling by AT, if the pipe were not
clamped, is compensated by an equal elongation due to the thermal stress F/A. This is linked

to the length change Al via the Yung’s modulus E = (F/A)/(Al/]).

First, calculate change of length of copper pipe if it wasn’t fived:

Aly = ol AT

Due to a tensile stress F/A, the pipe would be elongated by Aly:
F/A
Aly = z%

The length change Aly caused by cooling compensates for the length change Alscaused by
the tensile stress, so that their sum equals zero. Thus, we can calculate AT':
F/A

Al + Al =0 — olAT +1 5

0

Thus:
F/A 230 - 106N /m?

_ - _ = —-123K = —123°C
aF (17-10%1/K) - (110 - 10°N/m?2)

Add this value to the initial temperature. This results in the final temperature, at which the
copper pipe, clamped at the ends, will break due to cooling:

Ty =Ty + AT = 300°C — 123°C = 177°C

AT =

Comment: The hot water pipes in houses are therefore never rigidly clamped, as they
are heated during soldering. Moreover, temperature differences as high as those assumed
here do not occur: On the one hand, the flowing water cannot be colder than 0 °C, and on
the other hand, 60 °C is not usually exceeded with hot water. In addition, modern heating
systems work with even lower flow temperatures. Therefore, the effect described here is not
to be feared with proper installation and normal operation.



