

General Physics II: Tutorial Material

Lecture 11 (Chapter 10, Thermodynamic potentials)

1) Fundamental relations for specific quantities: It is common practice, in particular in chemistry, to use state functions that are specific quantities, i.e. extensive quantities per unit of volume or mass. Let's consider a simple system that has an internal energy $E_{int}(S, V, n_i)$. The volume densities e, s, ν_i are defined as

$$e = \frac{E_{int}}{V}, \quad s = \frac{S}{V}, \quad \nu_i = \frac{n_i}{V} \quad (1)$$

The mass densities e^*, s^*, ν^* are defined as

$$e^* = \frac{E_{int}}{M}, \quad s^* = \frac{S}{M}, \quad \nu_i^* = \frac{V}{M} \quad (2)$$

The mass chemical potential μ_i^* and the mass concentration c_i^* of substance i are defined as

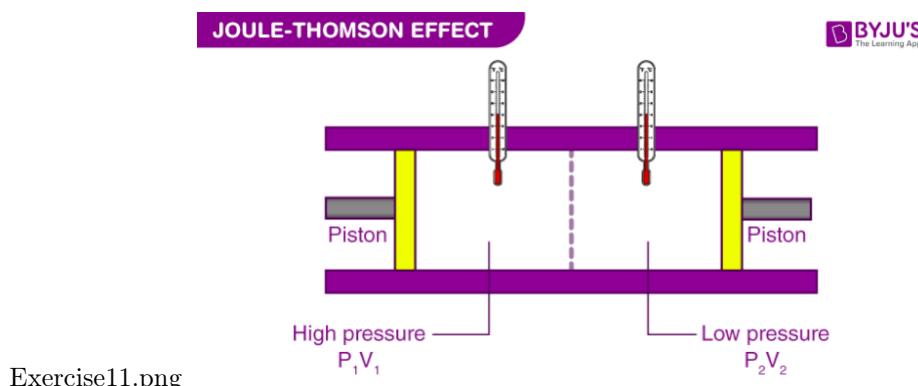
$$\mu_i^* = \frac{\mu_i}{M_i^*}, \quad c_i^* = \frac{n_i M_i^*}{M} \quad (3)$$

with M_i^* being the molar mass of substance i .

Determine the Gibbs, Euler and Gibbs-Duhem relations expressed in terms of e, s, ν_i .

Determine the Gibbs, Euler and Gibbs-Duhem relations expressed in terms of e^*, s^*, ν^*, c_i^* .

2) Joule-Thomson Expansion: Consider a Cylinder closed by two sliding pistons separated by a permeable fixed wall. The cylinder contains n moles of an ideal gas passing through the wall under the effect of pistons 1 and 2 that keep the pressures P_1 and P_2 constant in the subsystems 1 and 2 on both sides of the wall. The device is an adiabatic closed system.



a) Show that the enthalpy H is conserved if the external pressures exerted by the pistons are equal to the pressures in the corresponding subsystems at all times, i.e. $P_{1,ext} = P_1$ and $P_{2,ext} = P_2$. This is called the Joule Thomson expansion.

b) For an arbitrary gas and an infinitesimal pressure different dP , show that the Joule Thomson coefficient, defined as the partial derivative of temperature T with respect to the pressure P , is given by:

$$\frac{\partial T}{\partial P} = \frac{(T\alpha - 1)V}{c_P} \quad (4)$$

Where α is the thermal expansion coefficient defined as:

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \quad (5)$$

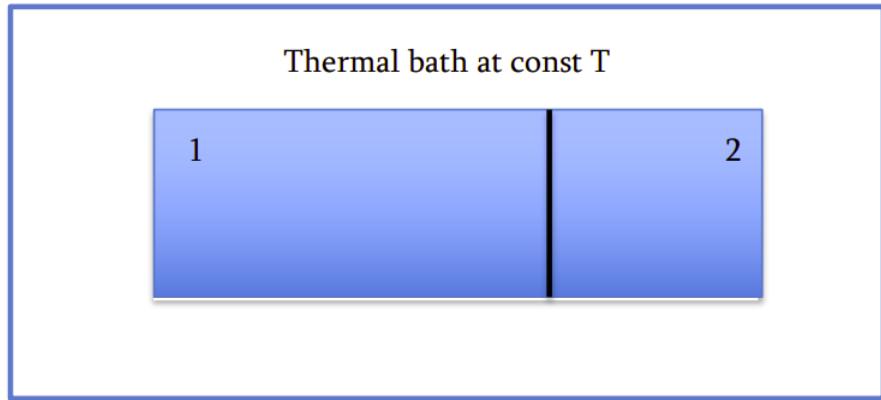
And c_P the specific heat at constant pressure defined as:

$$c_P = \frac{\partial H}{\partial T} \Big|_P = T \frac{\partial S}{\partial T} \quad (6)$$

3) Simple subsystems in a thermal bath: We consider a rigid, (i.e., V constant) closed system containing a homogeneous gas. The system is divided in two simple subsystems that are separated by a moveable, impermeable diathermal wall. The system is in thermal equilibrium with a thermal bath at temperature $T = \text{const}$. The kinetic and internal energies of the wall are negligible.

a) Express the differential of the free energy dF as a function of the infinitesimal heat dQ provided to the system.

b) Express the differential of the free energy dF as a function of the pressures P_1 and P_2 of the gas in the subsystems 1 and 2. Deduce that $dF \leq 0$.



Exercise11-2.png

4) Adiabatic compression: An ideal gas is characterized by the enthalpy $H(S, P) = C_P T$, where C_P is a constant (the heat capacity at constant pressure). An adiabatic reversible compression brings the pressure from P_1 to P_2 where $P_2 > P_1$. The initial temperature is T_1 . Determine the temperature T_2 at the end of the compression.

5) Grand potential: The **Grand potential** $\Phi(T, V, \mu)$, also known as the Landau free energy, is a thermodynamical potential obtained by performing the Legendre transformations of the internal energy $E_{int}(S, V, n)$ with respect to S and n . Use Legendre transformations to express the thermodynamical potential $\Phi(T, V, \mu)$ in terms of the thermodynamical potential F . Also determine the differential $d\Phi(T, V, \mu)$.