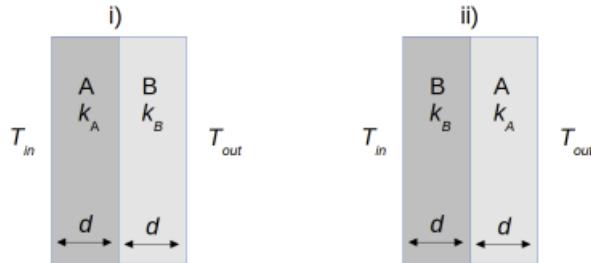


General Physics II: Tutorial Material

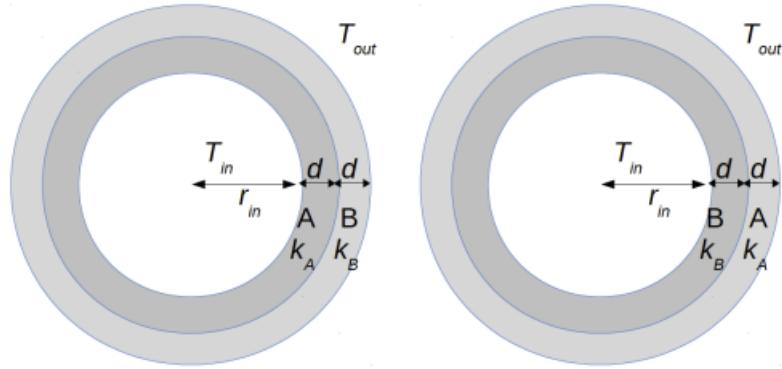
Lecture 13 (Chapter 10& 11, Thermodynamic potentials and Heat transfer)

1) Isothermal heat of surface expansion: A system consists of a thin film of surface area A , of internal energy $E_{int}(S, A)$, where $dE_{int} = TdS + \gamma dA$. γ is the surface tension given by:

$$\gamma(S, A) = \frac{\partial E_{int}(S, A)}{\partial A} \quad (1)$$

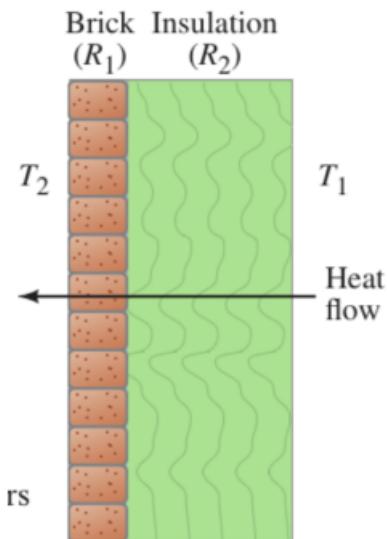

Express the heat Q_{if} to provide to the film for a variation of $\Delta A_{if} = A_f - A_i$ of the surface of the film through an isothermal process at temperature T , that brings the film from an initial state i to a final state f , in terms of $\gamma(T, A)$ and its partial derivatives.

2) Two questions related to thermal conductivity and Fourier's law for the heat flow rate


$$\dot{Q} \equiv \frac{dQ}{dt} = -kA \frac{dT}{dx} \quad (2)$$

I) Let us consider a wall consisting of two plates, A and B: both plates have a thickness d with thermal conductivities, k_A and k_B , respectively, and $k_A > k_B$. We use this wall for a house and can make i) surface A facing inside of the house and ii) surface B facing inside of the house. In winter when the outside temperature, T_{out} , is lower than the room temperature T_{in} , i.e., $T_{in} > T_{out}$.

- a) Calculate the heat flow rate from the room to outside through wall with configuration i).
- b) Calculate the heat flow rate from the room to outside through wall with configuration ii).
- c) Are the temperature profiles through the wall from the inside to the outside surface for the two configurations same or different? Which configuration loses more thermal energy to outside?



II) A pipe consists of the two layers of material with a same thickness d . The inner radius of the pipe is r_{in} . Two material A and B with thermal conductivities, k_A and k_B , respectively, are available for the layers where $k_A > k_B$. This pipe is used to transport hot water with a temperature T_{in} through cold outside with a temperature of T_{out} , where $T_{in} > T_{out}$. Figures below show the cross-sections of the pipes.

- a) Calculate the heat rate from the water to outside for a pipe where the inner layer with material A.
- b) Calculate the heat rate from the water to outside for a pipe where the inner layer with material B.
- c) Are the radial temperature profiles different between the two configurations? Which configuration loses more thermal energy to outside?

3) Suppose the insulating qualities of the wall of a house come mainly from a 4.0 inch layer of brick and an R-19 layer of insulation as shown below. What is the total rate of heat loss through such a wall if its total area is 195 feet² and the temperature difference across it is 35 F?

Definition of R values: the R value, i.e. the thermal resistance, specifies insulation properties of a building material, defined for a given thickness l of the material: $R = l/k$ with k being the thermal conductivity.

Larger R means a better insulation from heat or cold. Here, we exceptionally work with R units in British units [$\text{ft}^2 \text{ h F/Btu}$]; [Btu] is the British unit for heat with one BTU equal to about 1,055J. Below you can see a table giving some R values for common building materials.

TABLE 14-5 *R*-values

Material	Thickness	R-value ($\text{ft}^2 \cdot \text{h} \cdot \text{F}^\circ/\text{Btu}$)
Glass	$\frac{1}{8}$ inch	1
Brick	$3\frac{1}{2}$ inches	0.6–1
Plywood	$\frac{1}{2}$ inch	0.6
Fiberglass insulation	4 inches	12