

General Physics II: Tutorial Material

Lecture 4 on Chapter 5 (Statistical thermodynamics)

- 1) The rms speed of molecules in a gas at 20.0°C is to be increased by 2.0%. To what temperature must it be raised?
- 2) If you double the mass of the molecules in a gas, is it possible to change the temperature to keep the velocity distribution from changing? If so, how much change do you need to make to the temperature?
- 3) There are four coins with two faces, head and tail. Each coin has 50% probability to show head and 50% probability to show tail, when tossed individually. When we toss the four coins together:
 1. How many head-tail configurations are there if we can distinguish individual coins? What are the probabilities for those configurations?
 2. How many head-tail configurations are there if we cannot distinguish individual coins? Which configuration has the highest probability to be realized?
- 4) A drunken person is standing at $x = 0\text{m}$. When the drunken person makes one step, the person may go to the left (negative direction in x by 1m), remain at the same position or to the right (positive direction in x by 1 m) with a same probability (1/3 for each).

1. What is the probability for the drunken person to be at $x = -8\text{m}$, -7 m , -6 m , -5 m , -4 m , -3 m , -2 m , -1 m , -0 m , 1 m , 2 m , 3 m , 4 m , 5 m , 6 m , 7 m and 8 m after 1, 2, 4 and 7 steps?
2. What are the mean values, $\langle x \rangle$, and the rms, x_{rms} , for x after 1, 2, 4 and 7 steps? Figure 1 below show four probability distributions in x following the Gauss distribution, $G(x)$, given by

$$G(x) = \frac{1}{\sqrt{2\pi x_{rms}^2}} \exp \left[-\frac{(x - \langle x \rangle)^2}{2x_{rms}^2} \right] \quad (1)$$
 with x_{rms} equal to those obtained for 1, 2, 4 and 7 steps above, but not necessarily in this order.
3. Find out which Gauss distributions of Fig. 1 belong to which steps.
4. Superimpose the probability distributions of the x position of the drunken person on the Gauss distribution of corresponding steps. What kind of conclusion can you draw from comparing the distributions?

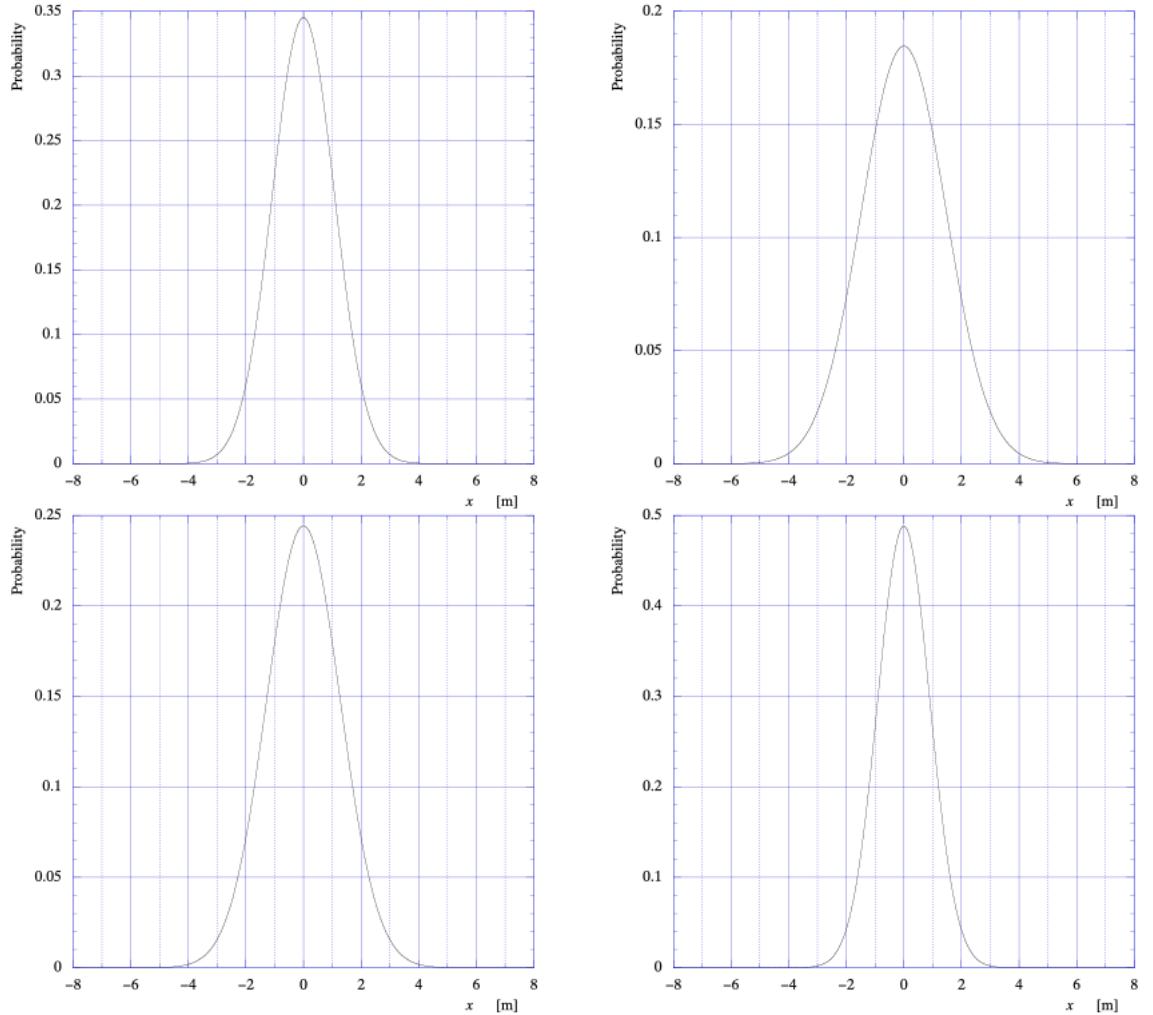


Figure 1: Gauss distributions of task 4-3.

5) There are N indistinguishable gas molecules uniformly distributed in a box with a volume V . Consider a small region in the box with a volume V_1 .

1. What is the probability to find any but only one molecule in this region?
2. What is the probability to find any n molecules in this region?
3. What is the average number of molecules, $\langle n \rangle$, and its standard deviation $\Delta n \equiv \sqrt{\langle n^2 \rangle - \langle n \rangle^2}$, where $\langle n^2 \rangle$ is the average of n^2 , in this region?
4. If N is of the order of the Avogadro number, i.e. about 10^{24} , and the volume of the considered region is about 1% of the total volume, how large is $\Delta n/\langle n \rangle$? What does it mean?

NB: The following formula might be useful:

$$\begin{aligned}
 (p+q)^M &= \sum_{m=0}^M \frac{M!}{m!(M-m)!} p^m q^{M-m} \\
 \sum_{m=0}^M m \frac{M!}{m!(M-m)!} p^m q^{M-m} &= Mp(p+q)^{M-1} \\
 \sum_{m=0}^M m^2 \frac{M!}{m!(M-m)!} p^m q^{M-m} &= Mp(p+q)^{M-1} + M(M-1)p^2(p+q)^{M-2}
 \end{aligned} \tag{2}$$