

General Physics II: Tutorial Material

Lecture 3 on Mathematical Notes

1 Balloon

A helium-filled balloon escapes a child's hand at sea level where the atmosphere is in 1 atm and 20.0°C. When it reaches an altitude of 3600 m where the temperature is 5.0°C and the pressure 0.68 atm, how will its volume compare to that at the sea level.

2 Air bubble

An air bubble with a diameter of 3.60 mm was created at the bottom of the lake, which is 2.5m deep. When the bubble reached the surface of the lake, where the temperature is 27°C, the diameter of the air bubble became 4.00 mm. The pressure of the atmosphere at the surface of the lake was 1 atm. What is the temperature of the water at the bottom of the lake? The density of the water is 1×10^3 kg and the gravitational acceleration constant g is 9.80 m/s², and assume that the air behaves as an ideal gas.

3 Hydrogen in outer space

In our outer space, the density of matter is 1 atom per cm³. It is dominated by the hydrogen atom and at a temperature of 2.7 K. What is the rms-speed of those hydrogen atoms? What is the pressure there in the unit of atm?

4 Vacuum pressure

The lowest pressure attainable using the best available vacuum technique is about $10^{-12} N/m^2$. At such a pressure, how many molecules are there per cm³ at 0°C?

5 rms-speed of molecules

Show that the rms-speed of gas molecules is given by $v_{rms} = \sqrt{3P/\rho}$, where P and ρ are the pressure and density of the gas respectively.

6 The bicycle pump

A bicycle pump takes a volume ΔV of air at atmospheric pressure P_0 and constant temperature T_0 and compresses it so that it enters a tyre that has a volume V_0 . The air inside the tyre is initially at atmospheric pressure P_0 and can be considered as an ideal gas. Determine the number of times N the user has to pump air into the tyre to reach a pressure P_f . Assume that the pump is designed such that the air in the tyre is always at temperature T_0 .

Compute N for $V_0 = 50$ l, $\Delta V = 1.2$ l, and $P_f = 2.5P_0$.

7 Basic mathematical concepts: Differentials of state functions

NOTE: Some of you may not be yet familiar with partial differentials – then please ignore this exercise until you have it in your math course, or you ask your TA!

7.1 Differentials of state functions

Consider the function $f(x, y) = y \exp(ax) + xy + bx \ln y$ where a and b are constants.

- Calculate $\frac{\partial f(x,y)}{\partial x}$, $\frac{\partial f(x,y)}{\partial y}$, and $df(x,y)$
- Calculate $\frac{\partial^2 f(x,y)}{\partial x \partial y}$

7.2 Differentials of the ideal gas equation

Consider the equation of state for ideal gas for the following tasks ($PV = nRT$).

- Calculate the differential $dP(T,V)$
- Calculate

$$\frac{\partial}{\partial T} \left(\frac{\partial P(T,V)}{\partial V} \right) \text{ and } \frac{\partial}{\partial V} \left(\frac{\partial P(T,V)}{\partial T} \right)$$

- Cyclic rule for ideal gas: Calculate

$$\frac{\partial P(T,V)}{\partial T} \frac{\partial T(P,V)}{\partial V} \frac{\partial V(T,P)}{\partial P}$$

7.3 State Function: Rubber Cord

A rubber cord of length L, which can be described as a state function $L(T, F)$ of the temperature T of the cord and of the forces of magnitude F applied at each end to stretch it. The two physical properties of the cord are:

- the Young modulus, which can be expressed as $E = \frac{L}{A} \left(\frac{\partial L}{\partial F} \right)^{-1}$ with A being the cross section area. Note that this is the same (but mathematical) definition as in the lecture notes only for small changes and solved for E.

$$\text{b) the thermal expansion coefficient } \alpha, \text{ which can be expressed as } \alpha = \frac{1}{L} \frac{\partial L}{\partial T}.$$

Determine how much the length of the cord varies if its temperature changes by dT and at the same time the force F changes by dF . Assume that $dT \ll T$ and $dF \ll F$. Express dL in terms of E and α .