General Physics II: Tutorial Material

Lecture 8 (Chapter 8 Entropy)

1) Lets us consider a very large heat reservoir at a temperature Tg, and a small thermal system at
Ts. The heat capacity of the small system is C (note that C is simply the amount of heat required
to raise the temperature of an entire object or system by one degree, i.e. @ = CAT). By putting
them into thermal contact, they reach a thermal equilibrium at T, since the heat reservoir has
such a large heat capacity and stays at the same temperature.

1. Calculate the entropy changes of the heat reservoir
2. Calculate the entropy changes of the small system.
3. Calculate the entropy changes of the total system.
4

. Show that the change of the entropy of the total system is AS > 0.

Solution: First we note that Q = CAT. Thus, the heat of the small system and that of reservoir
are given by Qsystem = C(Tr — Ts) and Qreservoir = —Qsystem respectively. So the thermal
energy flows from the reservoir to the small system when Tr > Ts. Process of the transferring of
thermal energy from the heat reservoir itself can be considered as a reversible process since the
process can be reversed by attaching another system with a temperature of 27, — Ts. A similar
argument can be valid for the system, since the process can be reversed by attaching the system
to another heat reservoir with a temperature of Ts. However, the combined process of the heat
reservoir and the system is irreversible.

1. Since the process of the heat reservoir alone is reversible and the temperature is fixed, we
can use the formulas @ = TAS and @Q = CAT. The entropy change of the heat reservoir is
then given by

Q ir Ts —Tr
ASreservoir = Te;f;vow =C TR

Thus, change of the reservoir entropy is negative when T > Ts.

(1)

2. Since the process of the system alone is reversible and the temperature is not fixed, we can
use the formulas dQ = T'dS and d@Q = CdT. The entropy of the small system is then given
by

A = ~ —cm=2 2
Ssystem C T T Cln TS ( )

Thus, the change of the system entropy is positive when Tr > Tg.

3. Entropy of the total system is given by

Ts — 1T, T
AS = ASreservoir + ASsysiﬁem = C(SiR) +Cln el (3)
Tr Ts
4. Let us rewrite the change of the entropy as
Ts Ts
AS = — —1—In— 4
S=C (TR n TR> (4)



For Ts/Tr = 0 we obtain AS = oo, for Ts/Tr = 1 we get AS = 0. From the derivative,

dAS T
a5 ¢ (1 - R) (5)
d(Ts/Tr) Ts
we learn that AS is monotonically decreasing function of Ts /Tg for Ts/Tr = 0to Ts/Tr = 1.

For Ts/Tr = 1 to Ts/Tr = oo, AS is monotonically increasing as a function of Ts/Tg.
Therefore, we can conclude that AS > 0, and it is 0 when T = Ts.

2) Show that the entropy difference of an n-mol ideal gas, AS, when the state A(Py,Vy,Ty) is
changed to B(Pa, Va2, Ts) quasi-statically (i.e., reversible), is given by

T
AS =nCy ln?j —&—ann% (6)

Show that this leads to AS = 0 for an adiabatic process, as expected from the definition.
Solution : From the first law of the thermodynamics, Q@ = AFE;,; + W, where W = PAV, and
with the ideal gas law, PV = nRT and AFE;,; = nCy AT, heat can be written as

T
Q = AE;y; + PAV = nCy AT + %AV (7)

For an infinitesimal quasi-static change of the state, this leads to

T
dQ = nCydT + %dv 8)

and the change in the entropy becomes

_dQ nCy .. nR

The entropy change for A to B is now given by
B
AS = / ds (10)
A
thus 5
dr av T Vz
AS = / (nCy—= 4+nR—)=[nCyInT +nRln V]ﬁ =nCyln== +nRln — (11)
A T v Ty %1
For an adiabatic process, we have PV =constant. Using PV = nRT, we have
vyt = vy (12)
thus )
15 v i Cp—-Cyv. W R W
In— =1 =(v-1lmh—e=——In—=—In-— 13
T vy b=Dn Va Gy V% Cv W (13)
It follows that
AS=0 (14)

which makes sense since ) = 0 in the adiabatic process.

3) The temperature of n-mol ideal gas has changed from T to T5 degrees. Determine the entropy
change for 1) under constant pressure and 2) under constant volume. (Consider reversible pro-
cesses.)

Solution : Under constant pressure, heat is given by Q@ = nCpAT or d@QQ = nCpdT. The formulas
hold equivalently for constant volume with Cy,. Entropy change is then given by

T:
2 dT T
S nC'p/T1 T nCp nT1 (15)



Similarly for the constant volume, we obtain

2 40 2 qr Ty
AS = — = nC’V/ — =nCyln— (16)
f:[v1 T Tl T Tl
Those relations can also be obtained from the entropy change for the general case
T V
AS = nCy lnﬁ —&—anan (17)
shown before. If the volume is constant, V; = V5 and
T
AS =nCyIn == (18)
T
If the pressure is constant, from PV = nRT, it follows that
VW R
n_ Y2 _ni (19)
T, T, P
and T V. T T
AS:ncvlnﬁ+nR1n7j:n(CV+R)1nf=ncp1nﬁ (20)

4) Thermalisation of two blocks: An isolated system consists of two homogeneous metallic blocks,
labeled 1 and 2, that can be considered as rigid systems (V = const). These blocks contain n4
and ny moles of a metal. The blocks, initially separated, have the temperatures 77 and Tp. When
they are brought into contact, they evolve asymptotically towards a thermal equilibrium at final
temperature Ty. The internal energy E;,:, of each block (i=1,2) is a function of its temperature
T; and the number of moles n; of metal in each block:

Einti = 3n,RT; (21)
where R is a positive constant.
1. Determine the final temperature T of the system.

2. Compute the entropy variation AS of the system during the process that leads to its thermal
equilibrium.

3. What is the entropy variation in the particular case of n; = ng = n?
Solution :

1. Given that the system is isolated, the internal energy is constant. Thus, the internal energy
variation of the total system is:

AEin = AEi1 + AEjp 2 =0 (22)

The variation of internal energy of each black is given by:

Ty
AEint,l = 3TL1R dl’' = 3n1R(Tf - Tl)
T
7, (23)
AEint,Q = STLQR dT = 377,2R(Tf — Tz)
T>
Thus, the final Tt of the system can be computed as follows:
3n1R(Tf — Tl) = —3n2R(Tf — Tg)
’anf -1y = —nng + noTh
anf + nQTf =T = nTs (24)
T T
STy = n1dy 4+ nads
ny +ng



2. The entropy variation of the system is:

AS = AS; + AS, (25)

Given that the volume is constant (dWW = 0), the internal energy variation dE;,; is equal to
dQ@. Thus, the entropy variation dS of each block can be written as:

dE;, dT;

dS1 = b1 = 3TL1R71
Ty T (26)

ds, = Lz _ g, pdl

2 — T2 - 2 T2

Which implies that the entropy variation of each block is given by (consider all "log" in the
following as "In", as in the lecture slides):

Ts ar T
AS; = 3n1R/ - = 3n1Rlog <f)

T
T;f dT T1 27
ASy; = 3n2R/ — =3nsRlog <f)
T2 T T2
Thus, the entropy variation during the process towards thermal equilibrium yields:
T T
AS = 3n;Rlog (f> + 3naRlog (f> (28)
T T
3. In the particular case where n; = ny = n, the final temperature is given by:
1
Ty = §(T1 +T3) (29)
which implies that the entropy variation is recast as:
T2 (T1 =+ T2)2
AS = 3nR1 I ) =3nRlog [ 2 30
niios <T1T2> " 0g( ATV T, ) (30)
Since the temperatures 77 and Ts are different, taking into account the identity:
(T) —To)? =T} +T§ — 21T >0 — T2 + T3 > 210 Ty (31)
and thus
(Ty + To)? = T? + T3 + 2TW Ty > 4T\ Ty (32)

The entropy variation is strictly positive (as expected from the 2nd for an isolated system):

AT\
ATV Ty )

AS > 3nRlog ( (33)



