
General Physics II: Tutorial Material

Lecture 8 (Chapter 8 Entropy)

1) Lets us consider a very large heat reservoir at a temperature TR, and a small thermal system at
TS . The heat capacity of the small system is C (note that C is simply the amount of heat required
to raise the temperature of an entire object or system by one degree, i.e. Q = C∆T ). By putting
them into thermal contact, they reach a thermal equilibrium at TR, since the heat reservoir has
such a large heat capacity and stays at the same temperature.

1. Calculate the entropy changes of the heat reservoir

2. Calculate the entropy changes of the small system.

3. Calculate the entropy changes of the total system.

4. Show that the change of the entropy of the total system is ∆S ≥ 0.

Solution: First we note that Q = C∆T . Thus, the heat of the small system and that of reservoir
are given by Qsystem = C(TR − TS) and Qreservoir = −Qsystem, respectively. So the thermal
energy flows from the reservoir to the small system when TR > TS . Process of the transferring of
thermal energy from the heat reservoir itself can be considered as a reversible process since the
process can be reversed by attaching another system with a temperature of 2TR − TS . A similar
argument can be valid for the system, since the process can be reversed by attaching the system
to another heat reservoir with a temperature of TS . However, the combined process of the heat
reservoir and the system is irreversible.

1. Since the process of the heat reservoir alone is reversible and the temperature is fixed, we
can use the formulas Q = T∆S and Q = C∆T . The entropy change of the heat reservoir is
then given by

∆Sreservoir =
Qreservoir

TR
= C

TS − TR
TR

(1)

Thus, change of the reservoir entropy is negative when TR > TS .

2. Since the process of the system alone is reversible and the temperature is not fixed, we can
use the formulas dQ = TdS and dQ = CdT . The entropy of the small system is then given
by

∆Ssystem = C

∫ TR

TS

dT

T
= C ln

TR
TS

(2)

Thus, the change of the system entropy is positive when TR > TS .

3. Entropy of the total system is given by

∆S = ∆Sreservoir + ∆Ssystem = C
(TS − TR)

TR
+ C ln

TR
TS

(3)

4. Let us rewrite the change of the entropy as

∆S = C

(
TS
TR
− 1− ln

TS
TR

)
(4)

1



For TS/TR = 0 we obtain ∆S =∞, for TS/TR = 1 we get ∆S = 0. From the derivative,

d∆S

d(TS/TR)
= C

(
1− TR

TS

)
(5)

we learn that ∆S is monotonically decreasing function of TS/TR for TS/TR = 0 to TS/TR = 1.
For TS/TR = 1 to TS/TR = ∞, ∆S is monotonically increasing as a function of TS/TR.
Therefore, we can conclude that ∆S ≥ 0, and it is 0 when TR = TS .

2) Show that the entropy difference of an n-mol ideal gas, ∆S, when the state A(P1, V1, T1) is
changed to B(P2, V2, T2) quasi-statically (i.e., reversible), is given by

∆S = nCV ln
T2
T1

+ nR ln
V2
V1

(6)

Show that this leads to ∆S = 0 for an adiabatic process, as expected from the definition.

Solution : From the first law of the thermodynamics, Q = ∆Eint + W , where W = P∆V , and
with the ideal gas law, PV = nRT and ∆Eint = nCV ∆T , heat can be written as

Q = ∆Eint + P∆V = nCV ∆T +
nRT

V
∆V (7)

For an infinitesimal quasi-static change of the state, this leads to

dQ = nCV dT +
nRT

V
dV (8)

and the change in the entropy becomes

dS =
dQ

T
=
nCV
T

dT +
nR

V
dV (9)

The entropy change for A to B is now given by

∆S =

∫ B

A

dS (10)

thus

∆S =

∫ B

A

(nCV
dT

T
+ nR

dV

V
) = [nCV lnT + nR lnV ]

B
A = nCV ln

T2
T1

+ nR ln
V2
V1

(11)

For an adiabatic process, we have PV γ =constant. Using PV = nRT , we have

V γ−1
1 T1 = V γ−1

2 T2 (12)

thus

ln
T2
T1

= ln
V γ−1
1

V γ−1
2

= (γ − 1) ln
V1
V2

=
CP − CV
CV

ln
V1
V2

=
R

CV
ln
V1
V2

(13)

It follows that
∆S = 0 (14)

which makes sense since Q = 0 in the adiabatic process.

3) The temperature of n-mol ideal gas has changed from T1 to T2 degrees. Determine the entropy
change for 1) under constant pressure and 2) under constant volume. (Consider reversible pro-
cesses.)

Solution : Under constant pressure, heat is given by Q = nCP∆T or dQ = nCP dT . The formulas
hold equivalently for constant volume with CV . Entropy change is then given by

∆S =

∫ T2

T1

dQ

T
= nCP

∫ T2

T1

dT

T
= nCP ln

T2
T1

(15)
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Similarly for the constant volume, we obtain

∆S =

∫ T2

T1

dQ

T
= nCV

∫ T2

T1

dT

T
= nCV ln

T2
T1

(16)

Those relations can also be obtained from the entropy change for the general case

∆S = nCV ln
T2
T1

+ nR ln
V2
V1

(17)

shown before. If the volume is constant, V1 = V2 and

∆S = nCV ln
T2
T1

(18)

If the pressure is constant, from PV = nRT , it follows that

V1
T1

=
V2
T2

=
nR

P
(19)

and
∆S = nCV ln

T2
T1

+ nR ln
V2
V1

= n(CV +R) ln
T2
T1

= nCP ln
T2
T1

(20)

4) Thermalisation of two blocks: An isolated system consists of two homogeneous metallic blocks,
labeled 1 and 2, that can be considered as rigid systems (V = const). These blocks contain n1
and n2 moles of a metal. The blocks, initially separated, have the temperatures T1 and T2. When
they are brought into contact, they evolve asymptotically towards a thermal equilibrium at final
temperature Tf . The internal energy Eint,i of each block (i=1,2) is a function of its temperature
Ti and the number of moles ni of metal in each block:

Eint,i = 3niRTi (21)

where R is a positive constant.

1. Determine the final temperature Tf of the system.

2. Compute the entropy variation ∆S of the system during the process that leads to its thermal
equilibrium.

3. What is the entropy variation in the particular case of n1 = n2 = n?

Solution :

1. Given that the system is isolated, the internal energy is constant. Thus, the internal energy
variation of the total system is:

∆Eint = ∆Eint,1 + ∆Eint,2 = 0 (22)

The variation of internal energy of each black is given by:

∆Eint,1 = 3n1R

∫ Tf

T1

dT = 3n1R(Tf − T1)

∆Eint,2 = 3n2R

∫ Tf

T2

dT = 3n2R(Tf − T2)

(23)

Thus, the final Tf of the system can be computed as follows:

3n1R(Tf − T1) = −3n2R(Tf − T2)

n1Tf − n1T1 = −n2Tf + n2T2

n1Tf + n2Tf = n1T1 = n2T2

→Tf =
n1T1 + n2T2
n1 + n2

(24)
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2. The entropy variation of the system is:

∆S = ∆S1 + ∆S2 (25)

Given that the volume is constant (dW = 0), the internal energy variation dEint is equal to
dQ. Thus, the entropy variation dS of each block can be written as:

dS1 =
dEint,1
T1

= 3n1R
dT1
T1

dS2 =
dEint,2
T2

= 3n2R
dT2
T2

(26)

Which implies that the entropy variation of each block is given by (consider all "log" in the
following as "ln", as in the lecture slides):

∆S1 = 3n1R

∫ Tf

T1

dT

T
= 3n1R log

(
Tf
T1

)
∆S2 = 3n2R

∫ Tf

T2

dT

T
= 3n2R log

(
Tf
T2

) (27)

Thus, the entropy variation during the process towards thermal equilibrium yields:

∆S = 3n1R log

(
Tf
T1

)
+ 3n2R log

(
Tf
T2

)
(28)

3. In the particular case where n1 = n2 = n, the final temperature is given by:

Tf =
1

2
(T1 + T2) (29)

which implies that the entropy variation is recast as:

∆S = 3nR log

(
T 2
f

T1T2

)
= 3nR log

(
(T1 + T2)2

4T1T2

)
(30)

Since the temperatures T1 and T2 are different, taking into account the identity:

(T1 − T2)2 = T 2
1 + T 2

2 − 2T1T2 > 0→ T 2
1 + T 2

2 > 2T1T2 (31)

and thus
(T1 + T2)2 = T 2

1 + T 2
2 + 2T1T2 > 4T1T2 (32)

The entropy variation is strictly positive (as expected from the 2nd for an isolated system):

∆S > 3nR log

(
4T1T2
4T1T2

)
= 0 (33)
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