General Physics II: Tutorial Material

Lecture 3 on Mathematical Notes

1 Balloon

A helium-filled balloon escapes a child’s hand at sea level where the atmosphere is in 1 atm and
20.0°C. When it reaches an altitude of 3600 m where the temperature is 5.0°C and the pressure
0.68 atm, how will its volume compare to that at the sea level.

Solution: We consider He gas to be an ideal gas. Since the He in the balloon does not escape, the
volume, pressure and temperature at the sea level (0 m ) and those at 3600 m follows the relation

PoVo  P3600V3600

To T3600

thus

Vae00 _ PyT3600
Vo P3g0010

By inserting Po = 1 atm, Psgoo = 0.68 atm, Ty = 273420 K, and T5600 = 273+ 5 K, we obtain

‘/3600_ 1 x 278 —14
Vo  0.68x293

i.e., the volume increases by 40% at 3600 m.

2 Air bubble

An air bubble with a diameter of 3.60 mm was created at the bottom of the lake, which is 2.5m
deep. When the bubble reached the surface of the lake, where the temperature is 27°C, the diam-
eter of the air bubble became 4.00 mm. The pressure of the atmosphere at the surface of the lake
was 1 atm. What is the temperature of the water at the bottom of the lake? The density of the
water is 1 x 10% kg and the gravitational acceleration constant g is 9.80 m/s?, and assume that the
air behaves as an ideal gas.

Solution:

The pressure, volume and temperature of the bubble at the surface (bottom) of the lake are denoted
as Py (Py), Vs (W) and T (Ty,), respectively.

Since the amount of air in the bubble did not change, PsVy/Ts = nR = P,V4, /T, thus

B
- RV,
At the surface, we have Ps =1 atm = 1.013 x 105 Pa = 1.013 x 105 N/m?

Ve =4mr3/3 =4m (4 x 1073 m/2)3 /3 =3.351 x 1078 m3,r is the diameter of the bubble
T, = 27°C = 300.2°K

Ty,

T

The pressure at the bottom of the lake is given by P, = Ps + Pyater where Pygter 1S the pressure
of the 2.5 m of water due to the gravitational force given by Pygter = g X Pwater X Quater =



(9.80 m/s?) x (1 x 10* kg/m?) x (2.5 m) = 2.45 x 10* N/m?.

This is because P = F/A = (m*a) /A; g relates to a for gravity from earth, p = m/V and d is the
height — g p d = (m*a) /A.

It follows that
P, = 1.258 x 10° N/m?
Vi, = dmr®/3 = 4 (3.6 x 1072 m/2)° /3 = 2.442 x 1078 m?

with r being the bubble diameter at the bottom

and, thus:

BV
- RV

T, T, = 272°K

3 Hydrogen in outer space
In our outer space, the density of matter is 1 atom per cm®. It is dominated by the hydrogen

atom and at a temperature of 2.7 K. What is the rms-speed of those hydrogen atoms? What is
the pressure there in the unit of atm?

Solution:

The mass of the hydrogen atom is 1u = 1.66 x 10727 kg, and the number of the hydrogen atom in
the universe per m* is 10%. From the Boltzmann’s equation, the rmsspeed is given by

KT 1.38 x 10723 J/K x 2.7 K
rms — - = =2
Y V3 m \/3 1.66 x 1027 kg 59 m/s

The pressure is given by the ideal gas law as

P_NkT_106><1.38><10—23 J/K x 27K
v 1 m3

Using the conversion factor, 1 atm = 1.01 x 10° Pa, we obtain

=3.726 x 1077 Pa

3.726 x 10~17

ol 1 3.7 x 10722 atm

P=3.726x10"'7 Pa=

4 Vacuum pressure

The lowest pressure attainable using the best available vacuum technique is about 10712 N/m?. At
such a pressure, how many molecules are there per cm?® at 0°C?

Solution: Assuming the ideal gas law is valid, the number of molecules is given by

PV
N="2_
kT

where k is the Boltzmann constant, = 1.38x10723 J/K = 1.38x10723Nm/K. For P = 1072Nm =2,V =
1 em?® =10"% m3, and T = 273 K, we obtain the number of molecules per cubic cm to be

10712Nm~2 x 1076 m3

1.38 x 10-23NmK ™! x 273 K




5 rms-speed of molecules

Show that the rms-speed of gas molecules is given by v.;,s = 1/3P/p , where P and p are the
pressure and density of the gas respectively.

Solution:
From the Mazwell’s distribution, the rms-velocity is given by

[ kT
Urms = 3—
m

where k is the Boltzmann’s constant and m is the mass of the gas molecule. The ideal gas law in
terms of the Boltzmann’s constant is given by PV = NKT where N is the number of molecules.
We can replace kT with PV/N and thus, it follows that

kr PV P P

m  Nm  Nm/V  p
where p = Nm/V is the density of the gas. It follows that

[ kT P
Urms = - = 3—
m P

6 The bicycle pump

A bicycle pump takes a volume AV of air at atmospheric pressure Py and constant temperature
Ty and compresses it so that it enters a tyre that has a volume V3. The air inside the tyre is
initially at atmospheric pressure Py and can be considered as an ideal gas. Determine the number
of times N the user has to pump air into the tyre to reach a pressure P;. Assume that the pump
is designed such that the air in the tyre is always at temperature T.

Compute N for Vo =501, AV =1.2 1, and Py = 2.5P.

Solution: The initial and final number of moles of air inside the tyre of volume Vi at temperature
Ty are given by:
_ BV _ PV oy By
N RTO N RTO no N P()

The additional number of moles of air pumped into the tyre each time are and the final number
of moles are:

o and ny

PA
An = ;ET(}/ and ny =ng + NAn

Here, N is the number of pumps.
Dividing the last equation by ng and replacing An with the above expression, we obtain:
An P()AV o

ny
L 14+ N==1+N -
no + no * TL()RTO

AV Py

1+ N—=
Y TR

which implies that (by solving the equation for N ):
Py Vo
N=(2L 1) _¢0
(Po ) N

This means that the air has to be pumped 63 times in order to reach a final pressure that is at
least 2.5 times the initial pressure.



7 Basic mathematical concepts: Differentials of state func-
tions

NOTE: Some of you may not be yet familiar with partial differentials — then please ignore this
exercise until you have it in your math course, or you ask your TA!

7.1 Differentials of state functions

Consider the function f(z,y) = yexp(ax) + xzy + bx Iny where a and b are constants.
a) Calculate %, %ﬁ/’y), and df (z,y)

b) Calculate & f(zy)

0xdy
Solution:
a)
0f(@,y) =ayexp(ax) +y+blny
Oz
of(@,y) bz
=explaxr) +T + —
9y p(ax) ”
of (z, of (, b
df (z,y) = f(ai‘ v) dx + f(;y v) dy = (ay exp(az) +y + blny)dx + (exp(ax) +xz+ ;) dy
b)

Of(x,y) O ayexp(ax) +y+blny) b
? = = 1 —
9udy 9 aexp(az) + 1+ ;
Note that it doesn’t matter whether you differentiate first with respect to x and then to y or first

with respect to y and then to x.

7.2 Differentials of the ideal gas equation

Consider the equation of state for ideal gas for the following tasks (PV = nRT).
a) Calculate the differential dP(T,V)

b) Calculate
0 (9P(T,V) d 0 (9P(T,V)
or \“ov ) M av o7

¢) Cyclic rule for ideal gas: Calculate

OP(T,V) dT(P,V) 0V (T, P)

oT ov oP
Solution:
a)
nR nRT
b)

aaT (ap(T,V)> 8(8P(T,V)>_ nR

oV oV oT 7

¢) The partial derivatives of the pressure, the temperature and the volume of an ideal gas
(PV=nRT) are given by:

oP(T, V) 0 (nRT) _nR

or  —or\v )V

oT(P,V) _8(PV> P

ov oV \ nR nR
oV(T,P) 0 (an) _ nR V.
P oP\ P p2 PT



Thus:
OP(T,V)oT(P,V)oV(T,P)

or ov opr

We will see later that this rule can be generalised.

=-1

7.3 State Function: Rubber Cord

A rubber cord of length L, which can be described as a state function L(T, F) of the temperature
T of the cord and of the forces of magnitude F applied at each end to stretch it. The two physical
properties of the cord are:

a) the Young modulus, which can be expressed as £ = % (g—g) ! with A being the cross section
area. Note that this is the same (but mathematical) definition as in the lecture notes only for small
changes and solved for E.

b) the thermal expansion coefficient «, which can be expressed as a = %g—%.

Determine how much the length of the cord varies if its temperature changes by d7' and at the
same time the force F changes by dF'. Assume that d1' << T and dF << F. Express dL in terms
of E and a.

Solution:
According to the definition of a differential, we can express the change of length of the rubber cord

dL as: oL oL
dL = a—TdT + B?dF

-1
1 9L L (L oL\ "
dL_L<LaT>dT+A (A (8F> ) dF
Using the two physical properties of the cord, we obtain an expression for the change of the length
of the rubber cord:

which can be recast as:

L
dL = LadT + —dF
o +AE

Comment: This is a mathematically elegant way to describe at the same time the expansion of
the rubber cord due to a change in temperature and due to a tensile stress as a consequence of a
force/pressure change at the ends of the rubber cords.



