
General Physics II: Tutorial Material

Lecture 3 on Mathematical Notes

1 Balloon
A helium-filled balloon escapes a child’s hand at sea level where the atmosphere is in 1 atm and
20.0◦C. When it reaches an altitude of 3600 m where the temperature is 5.0◦C and the pressure
0.68 atm, how will its volume compare to that at the sea level.

Solution: We consider He gas to be an ideal gas. Since the He in the balloon does not escape, the
volume, pressure and temperature at the sea level (0 m ) and those at 3600 m follows the relation

P0V0
T0

=
P3600V3600
T3600

thus

V3600
V0

=
P0T3600
P3600T0

By inserting Po = 1 atm, P3600 = 0.68 atm, T0 = 273+20 K, and T3600 = 273+5 K, we obtain

V3600
V0

=
1× 278

0.68× 293
= 1.4

i.e., the volume increases by 40% at 3600 m.

2 Air bubble
An air bubble with a diameter of 3.60 mm was created at the bottom of the lake, which is 2.5m
deep. When the bubble reached the surface of the lake, where the temperature is 27◦C, the diam-
eter of the air bubble became 4.00 mm. The pressure of the atmosphere at the surface of the lake
was 1 atm. What is the temperature of the water at the bottom of the lake? The density of the
water is 1×103 kg and the gravitational acceleration constant g is 9.80 m/s2, and assume that the
air behaves as an ideal gas.

Solution:
The pressure, volume and temperature of the bubble at the surface (bottom) of the lake are denoted
as Ps (Pb) , Vs (Vb) and Ts (Tb), respectively.
Since the amount of air in the bubble did not change, PsVs/Ts = nR = PbVb/Tb, thus

Tb =
PbVb
PsVs

Ts

At the surface, we have Ps = 1 atm = 1.013× 105 Pa = 1.013× 105 N/m2

Vs = 4πr3/3 = 4π
(
4× 10−3 m/2

)3
/3 = 3.351× 10−8 m3, r is the diameter of the bubble

Ts = 27◦C = 300.2◦K

The pressure at the bottom of the lake is given by Pb = Ps + Pwater where Pwater is the pressure
of the 2.5 m of water due to the gravitational force given by Pwater = g × ρwater × dwater =
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(
9.80 m/s2

)
×
(
1× 103 kg/m3

)
× (2.5 m) = 2.45× 104 N/m2.

This is because P = F/A = (m∗a) /A; g relates to a for gravity from earth, ρ = m/V and d is the
height → g ρ d = (m∗a) /A.

It follows that

Pb = 1.258× 105 N/m2

Vb = 4πr3/3 = 4π
(
3.6× 10−3 m/2

)3
/3 = 2.442× 10−8 m3

with r being the bubble diameter at the bottom

and, thus:

Tb =
PbVb
PsVs

Ts = 272◦K

3 Hydrogen in outer space
In our outer space, the density of matter is 1 atom per cm3. It is dominated by the hydrogen
atom and at a temperature of 2.7 K. What is the rms-speed of those hydrogen atoms? What is
the pressure there in the unit of atm?

Solution:
The mass of the hydrogen atom is 1u = 1.66× 10−27 kg, and the number of the hydrogen atom in
the universe per m3 is 106. From the Boltzmann’s equation, the rmsspeed is given by

vrms =

√
3

kT

m
=

√
3

1.38× 10−23 J/K× 2.7 K

1.66× 10−27 kg
= 259 m/s

The pressure is given by the ideal gas law as

P =
NkT

V
=

106 × 1.38× 10−23 J/K× 2.7 K

1 m3
= 3.726× 10−17 Pa

Using the conversion factor, 1 atm = 1.01× 105 Pa, we obtain

P = 3.726× 10−17 Pa =
3.726× 10−17

1.01× 105
= 3.7× 10−22 atm

4 Vacuum pressure
The lowest pressure attainable using the best available vacuum technique is about 10−12N/m2. At
such a pressure, how many molecules are there per cm3 at 0◦C?

Solution: Assuming the ideal gas law is valid, the number of molecules is given by

N =
PV

kT

where k is the Boltzmann constant, = 1.38×10−23 J/K = 1.38×10−23Nm/K. For P = 10−12Nm−2, V =
1 cm3 = 10−6 m3, and T = 273 K, we obtain the number of molecules per cubic cm to be

N =
10−12Nm−2 × 10−6 m3

1.38× 10−23NmK−1 × 273 K
= 265
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5 rms-speed of molecules

Show that the rms-speed of gas molecules is given by vrms =
√

3P/ρ , where P and ρ are the
pressure and density of the gas respectively.

Solution:
From the Maxwell’s distribution, the rms-velocity is given by

vrms =

√
3
kT

m

where k is the Boltzmann’s constant and m is the mass of the gas molecule. The ideal gas law in
terms of the Boltzmann’s constant is given by PV = NkT where N is the number of molecules.
We can replace kT with PV/N and thus, it follows that

kT

m
=
PV

Nm
=

P

Nm/V
=
P

ρ

where ρ ≡ Nm/V is the density of the gas. It follows that

vrms =

√
3
kT

m
=

√
3
P

ρ

6 The bicycle pump
A bicycle pump takes a volume ∆V of air at atmospheric pressure P0 and constant temperature
T0 and compresses it so that it enters a tyre that has a volume V0. The air inside the tyre is
initially at atmospheric pressure P0 and can be considered as an ideal gas. Determine the number
of times N the user has to pump air into the tyre to reach a pressure Pf . Assume that the pump
is designed such that the air in the tyre is always at temperature T0.
Compute N for V0 = 50 l, ∆V = 1.2 l, and Pf = 2.5P0.

Solution: The initial and final number of moles of air inside the tyre of volume V0 at temperature
T0 are given by:

n0 =
P0V0
RT0

and nf =
PfV0
RT0

→ nf
n0

=
Pf

P0

The additional number of moles of air pumped into the tyre each time are and the final number
of moles are:

∆n =
P0∆V

RT0
and nf = n0 +N∆n

Here, N is the number of pumps.
Dividing the last equation by n0 and replacing ∆n with the above expression, we obtain:

nf
n0

= 1 +N
∆n

n0
= 1 +N

P0∆V

n0RT0
= 1 +N

∆V

V0
=
Pf

P0

which implies that (by solving the equation for N ):

N =

(
Pf

P0
− 1

)
V0

∆V
= 62.5

This means that the air has to be pumped 63 times in order to reach a final pressure that is at
least 2.5 times the initial pressure.
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7 Basic mathematical concepts: Differentials of state func-
tions

NOTE: Some of you may not be yet familiar with partial differentials – then please ignore this
exercise until you have it in your math course, or you ask your TA!

7.1 Differentials of state functions
Consider the function f(x, y) = y exp(ax) + xy + bx ln y where a and b are constants.
a) Calculate ∂f(x,y)

∂x , ∂f(x,y)
∂y , and df(x, y)

b) Calculate ∂2f(x,y)
∂x∂y

Solution:
a)

∂f(x, y)

∂x
= ay exp(ax) + y + b ln y

∂f(x, y)

∂y
= exp(ax) + x+

bx

y

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy = (ay exp(ax) + y + b ln y)dx+

(
exp(ax) + x+

bx

y

)
dy

b)
∂2f(x, y)

∂x∂y
=
∂(ay exp(ax) + y + b ln y)

∂y
= a exp(ax) + 1 +

b

y

Note that it doesn’t matter whether you differentiate first with respect to x and then to y or first
with respect to y and then to x.

7.2 Differentials of the ideal gas equation
Consider the equation of state for ideal gas for the following tasks (PV = nRT).
a) Calculate the differential dP(T,V)
b) Calculate

∂

∂T

(
∂P (T, V )

∂V

)
and

∂

∂V

(
∂P (T, V )

∂T

)
c) Cyclic rule for ideal gas: Calculate

∂P (T, V )

∂T

∂T (P, V )

∂V

∂V (T, P )

∂P

Solution:
a)

dP (T, V ) =
nR

V
dT − nRT

V 2
dV

b)
∂

∂T

(
∂P (T, V )

∂V

)
=

∂

∂V

(
∂P (T, V )

∂T

)
= −nR

V 2

c) The partial derivatives of the pressure, the temperature and the volume of an ideal gas
(PV=nRT) are given by:

∂P (T, V )

∂T
=

∂

∂T

(
nRT

V

)
=
nR

V

∂T (P, V )

∂V
=

∂

∂V

(
PV

nR

)
=

P

nR

∂V (T, P )

∂P
=

∂

∂P

(
nrT

P

)
= −nR

P 2
= − V

PT
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Thus:
∂P (T, V )

∂T

∂T (P, V )

∂V

∂V (T, P )

∂P
= −1

We will see later that this rule can be generalised.

7.3 State Function: Rubber Cord
A rubber cord of length L, which can be described as a state function L(T, F) of the temperature
T of the cord and of the forces of magnitude F applied at each end to stretch it. The two physical
properties of the cord are:

a) the Young modulus, which can be expressed as E = L
A

(
∂L
∂F

)−1
with A being the cross section

area. Note that this is the same (but mathematical) definition as in the lecture notes only for small
changes and solved for E.

b) the thermal expansion coefficient α, which can be expressed as α = 1
L

∂L
∂T .

Determine how much the length of the cord varies if its temperature changes by dT and at the
same time the force F changes by dF . Assume that dT << T and dF << F . Express dL in terms
of E and α.

Solution:
According to the definition of a differential, we can express the change of length of the rubber cord
dL as:

dL =
∂L

∂T
dT +

∂L

∂F
dF

which can be recast as:

dL = L

(
1

L

∂L

∂T

)
dT +

L

A

(
L

A

(
∂L

∂F

)−1
)−1

dF

Using the two physical properties of the cord, we obtain an expression for the change of the length
of the rubber cord:

dL = LαdT +
L

AE
dF

Comment: This is a mathematically elegant way to describe at the same time the expansion of
the rubber cord due to a change in temperature and due to a tensile stress as a consequence of a
force/pressure change at the ends of the rubber cords.
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