
General Physics II: Tutorial Material

Lecture 12 (Mock Exam II)

1) Let us consider a rigid and hermetic room with a volume of 22.6 m3 and filled with air with
a pressure of 1 atm at 0◦C. We assume that air is an ideal gas. In the following, assume
that 0◦C = 273 K and 1 atm = 1.013 × 105 N/m2, and for the air, the molecular specific heat
CP = 7 cal/(mol ·K) and γ = CP /CV = 1.4 are assumed to be constant. Another useful number
is 1 Nm = 1 J = 2.39× 10−4 kcal.

a) The air temperature in the room is quasi-statically increased from 0◦ to 20◦C. Draw the P -V
(pressure versus volume) diagram of this process and calculate the heat, Q, necessary for this
process.

b) Fixture of one of the walls is removed and the wall can move freely such that the pressure of
the air inside can be fixed to 1 atm. However, it is still hermetic so that the air inside cannot leak
outside. How large is the heat, Q, needed to quasi-statically increase the air temperature of the
room from 0◦ to 20◦C?

c) Instead of removing the wall fixture, we make a very small hole on the wall, which allows the
air in the room to escape outside very slowly if required, such that the pressure of the air inside
the room is always kept at 1 atm. How large is the heat, Q, needed to quasi-statically increase the
air temperature of the room to 20◦C?

Solution:

a) From the values of γ and CP given in the problem, the universal gas constant can be obtained
as R = CP −CV = CP (1− 1/γ) = 2 cal/(mol ·K). The mole number, n, for the air in the room is
given by the ideal gas law as

n =
PV

RT
≈ 1× 103 mole (1)

where P = 1 atm = 1.013 × 105 N/m2, V = 22.6 m3 and T = 273 K. Since the room is hermetic
and rigid, the volume and amount of the air does not change, thus from the ideal gas law P/T is
constant. Therefore, the pressure, P , of the air in the room at the temperature T = 20◦C = 293 K
is given by

P = 1 atp× 293 K
273 K

≈ 1.073 atp (2)

Hence the P -V diagram of the process is given by
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Since it is a process under the constant volume, the necessary heat is given by

Q =

∫ T1

T0

nCV dT = nCV

∫ T1

T0

dT = nCV ∆T (3)

where ∆T = 20◦ K and
CV = CP /γ = 7/1.4 = 5cal/(mol ·K) (4)

It follows that the necessary heat is given by

Q = nCV ∆T = 100kcal (5)

b) Since the pressure of the air, P , is kept constant and the air stays inside of the room, the
necessary thermal energy to increase the temperature by ∆T is given by

Q = nCP∆T = 140 kcal. (6)

c) When the air temperature increases, part of the air escapes through the hole, thus the air has
to make work, and the pressure, P , remains constant. Therefore, the amount of the air, n,
changes in the process. Also the temperature increase is quasi-static and the ideal gas law is valid
for the air inside of the room and

n =
P0V0
RT

(7)

where P0 = 1 atm = 1.013× 105 N/m2 and V0 = 22.6 m3, i.e. n is a function of T . Therefore, the
thermal energy needed to increase the air temperature from T0 to Ti is given by,

Q =

∫ T1

T0

CPndT = CP

∫ T1

T0

P0V0
RT

dT =
P0V0
R

CP ln
T1
T0
. (8)

P0 = 1 atm = 1.013× 105 N/m2, V0 = 22.6 m3, T0 = 273 K, T1 = 293 K and R = 2 cal/(mole ·K)
lead to the equation to Q = 135 kcal.

2) We consider a system of a hermetic cylinder with a volume VC placed in a thermally isolated
environment. The cylinder is split into two volumes, VA and VB , with a hermetic wall. The volume
VA is filled with an n mol ideal gas with a pressure PA and volume VB kept in vacuum.
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a) The wall is moved quasi-statically so that the volume VA becomes VC .

• i. What are the pressure and temperature of the gas when it reaches to the volume VC?

• ii. Calculate the entropy change, ∆S, for this process.

b) Instead of moving the wall quasi-statically, it is removed suddenly to let the gas make vacuum
expansion for its volume to become VC , which is called "free expansion". After the system reaching
equilibrium:

• i. What is the pressure and temperature of the system for the final state?

• ii. Calculate the entropy change for this process.

Solution a):

Using the ideal gas law, the temperature of the initial state is given by

TA =
VAPA
nR

(9)

• i. Since the system in thermal isolation, there is no heat transfer (but work is done by the
system). Therefore, the process is an adiabatic expansion of the system to the volume VC ,
i.e. PAV

γ
A = PCV

γ
C , where PC is the pressure of the final state and γ = CP /CV , thus

PC = PA

(
VA
VC

)γ
(10)

And using the ideal gas law, the temperature of the final state is then given by

TC =
VCPC
nR

=
VCPA
nR

(
VA
VC

)γ
(11)

• ii. This process is reversible where entropy difference is solely given by

∆S =

∫ final

initial

dQ

T
= 0 (12)

since there is no heat exchange with the environment (and no entropy production).

Solution b):

• i. Since the gas expands without pressure, there is no work in vacuum expansion (total
volume of the system stays the same). As the system is in thermal isolation, there is also
no heat exchange with the environment. Therefore, the internal energy of the system is
identical to the initial state after the expansion, i.e. the temperature remains unchanged
after the expansion. The final state after the vacuum expansion has volume VC , and the
temperature identical to the initial state

TC = TA =
VAPA
nR

(13)

Once the system reaches its equilibrium, the ideal gas law can be used and the pressure of
the final state is given by:

P =
nRTA
VC

(14)
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• ii. The process of free vacuum expansion is not a reversible process, thus

∆S =

∫ final

initial

dQ

T
(15)

cannot be used to calculate the entropy change, as there is a contribution from entropy
production within the system (see lecture notes). On the other hand, entropy depends only
on the initial state and final state, but not on the path in between. Therefore, a reducible
process reaching to the same final state can be used to calculate the entropy difference using
the above equation. As T stays the same, isothermal expansion can bring the initial state
to this final state. On the isothermal path, there is no change in the internal energy, thus,
W = Q. The entropy change can be then computed by

∆S =

∫ final

initial

dQ

T
=

1

TA

∫ VC

VA

PdV = nR

∫ VC

VA

dV

V
= nR ln

VC
VA

(16)

Clarification for a) ii:
To formalize why the temperatures TA and TC are equal, we can make use of thermodynamic
subsystems. One considers the system to be the whole cylinder, and the parts VA (labeled A) and
VB (labeled B) subsystems of it. Then, for the full system, since δQ = 0 (thermal isolation) and
δW = 0 (fixed volume), the internal energy doesn’t change by virtue of the second law, dU = 0.
Since U is an extensive state variable, U = UA + UB . But B contains a vacuum, and thus no
internal energy, such that U ≡ UA. Given that dU = 0, we know that the internal energy of the
final configuration is UC = U = UA. Since the internal energy of an ideal gas depends only on
temperature, this implies TC = TA.

3) Gas molecules are moving randomly due to thermal motion. Using the Boltzmann factor,
e−E/kT , where E is the kinetic energy, k is the Boltzmann constant and T is the temperature of
the gas, probability for a monoatomic gas molecule has three vector-velocity with a value between
v and v + dv, is given by

P (vx, vy, vz)dvxdvydvz =
( m

2πkT

)3/2
exp

(
− m

2kT
(v2x + v2y + v2z)

)
dvxdvydvz. (17)

a) What is the probability for a molecule to have a velocity in z-direction between vz and vz +dvz,
while it can have any values in x and y direction?

b) What is the average velocity in z for the atoms moving toward the positive z direction? What
is the average velocity in z for the atoms moving toward the negative z direction?

c) Would these two velocities be different if the gas molecule were diatomic? Why?

Solution:

a) Since vx and vy can take any values, the desired probability for vz, P (vz)dvz, is given by
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integrating the P (vx, vy, vz)dvxdvydvz over vx and vy from −∞ to +∞:

P (vz)dvz =

∫ ∞
−∞

dvx

∫ ∞
−∞

dvyP (vx, vy, vz)dvz

=

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

( m

2πkT

)3/2
exp

(
−
m(v2x + v2y + v2z)

2kT

)
dvz

=
( m

2πkT

)1/2
exp

(
−mv

2
z

2kT

)
dvz

[∫ ∞
−∞

( m

2πkT

)1/2
exp

(
−mv

2
x

2kT

)
dvx

]
×

[∫ ∞
−∞

( m

2πkT

)1/2
exp

(
−
mv2y
2kT

)
dvy

]

=
( m

2πkT

)1/2
exp

(
−mv

2
z

2kT

)
dvz × 1× 1

=
( m

2πkT

)1/2
exp

(
−mv

2
z

2kT

)
dvz (18)

b) If we consider only positive vz, the probability distribution P (vz) is not normalized to 1 because∫ ∞
0

P (vz)dvz =
1

2

∫ ∞
−∞

P (vz)dvz =
1

2
(19)

Therefore, this normalization factor needs to be taken into account when calculating 〈vz〉+, which
is given by

〈vz〉+ =

∫∞
0
vzP (vz)dvz∫∞

0
P (vz)dvz

= 2

∫ ∞
0

vzP (vz)dvz

= 2

∫ ∞
0

vz

( m

2πkT

)1/2
exp

(
−mv

2
z

2kT

)
dvz

= 2
( m

2πkT

)1/2 [
−kT
m

exp

(
−mv

2
z

2kT

)]∞
0

= 2
( m

2πkT

)1/2(
0−

(
−kT
m

))
=

(
2kT

πm

)1/2

(20)

Similarly, the average value of vz for vz < 0, 〈vz〉−, is given by

〈vz〉− =

∫ 0

−∞ vzP (vz)dvz∫ 0

−∞ P (vz)dvz

= 2

∫ 0

−∞
vzP (vz)dvz

= 2

∫ 0

−∞
vz

( m

2πkT

)1/2
exp

(
−mv

2
z

2kT

)
dvz

= 2
( m

2πkT

)1/2 [
−kT
m

exp

(
−mv

2
z

2kT

)]0
−∞

= 2
( m

2πkT

)1/2(
−kT
m
− 0

)
= −

(
2kT

πm

)1/2

(21)
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c) The kinetic energy of diatomic molecule has additional terms due to rotations. However, once
they are integrated out in the probability distribution, as done for vx and vy, the remaining prob-
ability distribution for vz is identical to that of monoatomic molecule. Therefore, two velocities
are identical to those for the monoatomic molecule.
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