General Physics II: Tutorial Material

Lecture 12 (Mock Exam II)

1) Let us consider a rigid and hermetic room with a volume of 22.6 m® and filled with air with
a pressure of 1 atm at 0°C. We assume that air is an ideal gas. In the following, assume
that 0°C = 273 K and 1 atm = 1.013 x 10° N/r1127 and for the air, the molecular specific heat
Cp =7 cal/(mol - K) and v = Cp/Cy = 1.4 are assumed to be constant. Another useful number
is 1 Nm=1J=2.39 x 107* kecal.

a) The air temperature in the room is quasi-statically increased from 0° to 20°C. Draw the P-V
(pressure versus volume) diagram of this process and calculate the heat, @, necessary for this
process.

b) Fixture of one of the walls is removed and the wall can move freely such that the pressure of
the air inside can be fixed to 1 atm. However, it is still hermetic so that the air inside cannot leak
outside. How large is the heat, ), needed to quasi-statically increase the air temperature of the
room from 0° to 20°C?

c) Instead of removing the wall fixture, we make a very small hole on the wall, which allows the
air in the room to escape outside very slowly if required, such that the pressure of the air inside
the room is always kept at 1 atm. How large is the heat, @), needed to quasi-statically increase the
air temperature of the room to 20°C?

Solution:

a) From the values of v and Cp given in the problem, the universal gas constant can be obtained
as R=Cp—Cy =Cp(1—1/v) =2 cal/(mol- K). The mole number, n, for the air in the room is

given by the ideal gas law as
PV

nzﬁmmuﬁ mole (1)
where P = 1 atm = 1.013 x 10° N/m27 V =22.6 m3 and T = 273 K. Since the room is hermetic
and rigid, the volume and amount of the air does not change, thus from the ideal gas law P/T is
constant. Therefore, the pressure, P, of the air in the room at the temperature T" = 20°C = 293 K
is given by

293 K
P =1 atp x RS 1.073 atp (2)

Hence the P-V diagram of the process is given by
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Since it is a process under the constant volume, the necessary heat is given by
T1 Tl
Q = nCvdT == TLCV dTl = nCVAT (3)
To To
where AT = 20° K and
Cy =Cp/y="T7/14=5cal/(mol - K) (4)
It follows that the necessary heat is given by
Q = nCy AT = 100kcal (5)

b) Since the pressure of the air, P, is kept constant and the air stays inside of the room, the
necessary thermal energy to increase the temperature by AT is given by

Q = nCpAT = 140 keal. (6)

c) When the air temperature increases, part of the air escapes through the hole, thus the air has
to make work, and the pressure, P, remains constant. Therefore, the amount of the air, n,
changes in the process. Also the temperature increase is quasi-static and the ideal gas law is valid

for the air inside of the room and
)

= 7
where Py =1 atm = 1.013 x 105 N/m? and Vy = 22.6 m?, i.e. n is a function of T. Therefore, the
thermal energy needed to increase the air temperature from 7j to 7; is given by,

EE T pyvi PV T
— dT = 007 = 220 1n =L,
Q - Cpn Cp /TO RT R Cp HTO (8)

Py=1atm = 1.013 x 10° N/mQ, Vo =22.6 m3 Ty = 273 K, Ty = 293 K and R = 2 cal/(mole - K)
lead to the equation to @ = 135 kcal.

2) We consider a system of a hermetic cylinder with a volume V¢ placed in a thermally isolated
environment. The cylinder is split into two volumes, V4 and Vg, with a hermetic wall. The volume
V4 is filled with an n mol ideal gas with a pressure P4 and volume Vz kept in vacuum.




a) The wall is moved quasi-statically so that the volume V4 becomes V.
e i. What are the pressure and temperature of the gas when it reaches to the volume V?

e ii. Calculate the entropy change, AS, for this process.

b) Instead of moving the wall quasi-statically, it is removed suddenly to let the gas make vacuum
expansion for its volume to become V¢, which is called "free expansion". After the system reaching
equilibrium:

e i. What is the pressure and temperature of the system for the final state?

e ii. Calculate the entropy change for this process.

Solution a):

Using the ideal gas law, the temperature of the initial state is given by

_ VaPa
 nR

Ta 9)

e i. Since the system in thermal isolation, there is no heat transfer (but work is done by the
system). Therefore, the process is an adiabatic expansion of the system to the volume Vi,
ie. PaV, = PcV/, where Pc is the pressure of the final state and v = Cp/Cy, thus

Po =Py (“2)7 (10)

And using the ideal gas law, the temperature of the final state is then given by

_VbR;_L@PA(VA)V
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e ii. This process is reversible where entropy difference is solely given by

final @ B

AS = =0 (12)

initial T

since there is no heat exchange with the environment (and no entropy production).

Solution b):

e i. Since the gas expands without pressure, there is no work in vacuum expansion (total
volume of the system stays the same). As the system is in thermal isolation, there is also
no heat exchange with the environment. Therefore, the internal energy of the system is
identical to the initial state after the expansion, i.e. the temperature remains unchanged
after the expansion. The final state after the vacuum expansion has volume V¢, and the
temperature identical to the initial state

~ VaPa
 nR

Te =Ta (13)
Once the system reaches its equilibrium, the ideal gas law can be used and the pressure of

the final state is given by:
nRT 4

Ve

P =

(14)



e ii. The process of free vacuum expansion is not a reversible process, thus

final
AS = / 9 (15)

nitial T

cannot be used to calculate the entropy change, as there is a contribution from entropy
production within the system (see lecture notes). On the other hand, entropy depends only
on the initial state and final state, but not on the path in between. Therefore, a reducible
process reaching to the same final state can be used to calculate the entropy difference using
the above equation. As T stays the same, isothermal expansion can bring the initial state
to this final state. On the isothermal path, there is no change in the internal energy, thus,
W = Q. The entropy change can be then computed by

final Vi \%.
Q 1 / c / cqv Vo
AS = — = — PdV =nR — =nRln— 16

mitiml T Ta Jv, ve V Va (16)

Clarification for a) ii:

To formalize why the temperatures T4 and T¢ are equal, we can make use of thermodynamic
subsystems. One considers the system to be the whole cylinder, and the parts V4 (labeled A) and
Vs (labeled B) subsystems of it. Then, for the full system, since 6@Q = 0 (thermal isolation) and
O0W = 0 (fixed volume), the internal energy doesn’t change by virtue of the second law, dU = 0.
Since U is an extensive state variable, U = Uy + Up. But B contains a vacuum, and thus no
internal energy, such that U = U,4. Given that dU = 0, we know that the internal energy of the
final configuration is Us = U = Uja. Since the internal energy of an ideal gas depends only on
temperature, this implies T = T'4.

3) Gas molecules are moving randomly due to thermal motion. Using the Boltzmann factor,
e~ E/KT where E is the kinetic energy, k is the Boltzmann constant and T is the temperature of
the gas, probability for a monoatomic gas molecule has three vector-velocity with a value between
v and v + dv, is given by

3/2
P(vg, vy, v, )dvgdo,dvo, = (%) exp (—%(vi + v, + U?)) dvgdvydv,. (17)

a) What is the probability for a molecule to have a velocity in z-direction between v, and v, + dv,,
while it can have any values in = and y direction?

b) What is the average velocity in z for the atoms moving toward the positive z direction? What
is the average velocity in z for the atoms moving toward the negative z direction?

¢) Would these two velocities be different if the gas molecule were diatomic? Why?

Solution:

a) Since v, and v, can take any values, the desired probability for v,, P(v.)dv,, is given by



integrating the P(vy, vy, v,)dvzdv,dv, over v, and v, from —oo to +oo:

P(v,)dv, :/ dvm/ dvy P(vg, vy, v,)dv,
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b) If we consider only positive v,, the probability distribution P(v,) is not normalized to 1 because
1

X
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— 00
Therefore, this normalization factor needs to be taken into account when calculating (v, )y, which
is given by

fo v, P(v,)dv,
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Similarly, the average value of v, for v, < 0, (v,)_, is given by

f v, P(v,)dv,
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c) The kinetic energy of diatomic molecule has additional terms due to rotations. However, once
they are integrated out in the probability distribution, as done for v, and vy, the remaining prob-
ability distribution for v, is identical to that of monoatomic molecule. Therefore, two velocities
are identical to those for the monoatomic molecule.



