
General Physics II: Tutorial Material

Lecture 10 (Chapter 9, Thermal machines)

1) Braking cycle
A system is made up of a vertical cylinder which is sealed at the top and closed by a piston at the
bottom. A valve A controls the intake of gas at the top and an exhaust valve B (also at the top)
is held back by a spring that exerts a constant pressure P2 on the valve. The system goes through
the following processes:

• 0 → 1: the piston is at the top of the cylinder; Valve A opens up and the piston is lowered
into it so that some of the gas at atmospheric pressure P0 = P1 is added to the cylinder. The
gas is at room temperature T1. Valve B is closed. The maximum volume occupied by the
incoming gas is V1.

• 1→ 2: Valve A is now closed and the piston moves upward, fast enough so that the process
can be considered adiabatic. Valve B remains closed as long as the pressure during the rise
of the piston is lower than P2. As the piston continues its rise, the gas reaches pressure
P2 = 10P1, at a temperature T2 in a volume V2. Assume a reversible adiabatic process.

• 2 → 3: As the piston keeps moving up, valve B opens up, the pressure is P3 = P2 and the
gas is released in the environment while valve A still remains closed until the piston reaches
the top, where V3 = V0 = 0.

• 3→ 0: Valve B closes and valve A opens up. The system is ready to start over again.

Analyze this cycle by using the following instructions:

a) Draw the P-V diagram for the 3 processes that the system is undergoing.

b) Determine the temperature T2 and volume V2.

c) Find the work W performed per cycle.

Numerical application:

V0 = V3 = 0, P0 = P1 = 1× 105 Pa, V1 = 0.25 L, T1 = 27◦C, γ = 1.4 (1)

Solution:

a) The P-V diagram consists of an isobaric expansion (0→ 1), an adiabatic compression (1→ 2),
an isobaric contraction (2→ 3) and an isochoric decompression (3→ 0).
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b) For the adiabatic compression, from the adiabatic equations we obtain:

T γ1 P
1−γ
1 = T γ2 P

1−γ
2 (2)

which implies that

T2 = T1

(
P1

P2

)(1−γ)/γ

= T1

(
1

10

)(1−γ)/γ

= 579K (3)

The first adiabatic equation we derived in the lecture is:

P1V
γ
1 = P2V

γ
2 (4)

which implies that

V2 = V1

(
P1

P2

)1/γ

= V1

(
1

10

)1/γ

= 0.048l (5)

c) The work performed on the gas over the entire cycle is the sum of the works performed during
the four processes:

W = W01 +W12 +W23 +W30 (6)

The work performed during the isobaric process is:

W01 +W23 = P1

∫ V1

0

dV + P2

∫ 0

V2

dV = P1V1 − P2V2 (7)

There is no work performed during the isochoric process: W30 = 0. The work performed
during the adiabatic process is:

W12 =

∫ V2

V1

PdV = P1V
γ
1

∫ V2

V1

dV

V γ
=
P1V

γ
1

1− γ
(V 1−γ

2 − V 1−γ
1 ) =

1

1− γ
(P2V2 − P1V1) (8)

Thus,
W =

γ

γ − 1
(P1V1 − P2V2) =

γ

γ − 1
P1(V1 − 10V2) = −80.5kJ (9)

Since the work is negative (remember ∆Eint = Q−W ), work is done on the system, i.e. the
system can act as a brake for whatever mechanism drives the motion of the piston.
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2) For the Otto Cycle shown in the figures below, calculate the efficiency of the Otto cycle engine
and compare with that of the Carnot cycle engine, εCarnot = 1 − Ta

Tc
, where Ta and Tc are the

lowest and highest temperature of the system, respectively. Which one of the two engines is more
efficient?

Solution:

The Otto cycle consists of four paths combining the two adiabatic and two isovolumetric paths.

A(Va, Pa, Ta) : Gas (mixture of gasoline with air) in the cylinder.

A → B : Adiabatic compression of gas (Q = 0, V decreases, P increases, T increases) by the
movement of the piston (W < 0).

B(Vb, Pb, Tb) : Ignition with a spark plug (gasoline) or self-ignition (diesel)

B → C : QH generated, P and T increase at the constant volume.

C(Vc, Pc, Tc) : Pressure reaches its highest point.

C → D : Adiabatic expansion of the gas (Q = 0, V increases, P decreases, T decreases) by pushing
down the piston (W > 0).
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D(Vc, Pc, Tc) : The volume is at its maximum.

D → A : QL to the environment at the constant volume. The burned gas is replaced by the new gas.

The heat in B → C is given by :

Q1 = nCV (Tc − Tb) > 0, (10)

and similarly for D → A,
Q2 = nCV (Ta − Td) < 0. (11)

From the first law of thermodynamics, ∆Eint = Q−W , the work in one cycle is given by :

W = Q = Q1 +Q2. (12)

Thus, the efficiency :

ε =
W

Q1
= 1 +

Q2

Q1
= 1 +

Ta − Td
Tc − Tb

. (13)

In the adiabatic processes, we have PaV γa = PbV
γ
b and PcV

γ
b = PdV

γ
a . Using the ideal gas law,

PaVa
Ta

=
PbVb
Tb

and
PcVb
Tc

=
PdVa
Td

(14)

It follows that
PaV

γ
a = PbV

γ
b

PaV
γ
a

Ta
PaVa

= PbV
γ
b

Tb
PbVb

TaV
γ−1
a = TbV

γ−1
b

(15)

and
PcV

γ
b = PdV

γ
a

PcV
γ
b

Tc
PcVb

= PdV
γ
a

Td
PdVa

TcV
γ−1
b = TdV

γ−1
a

(16)

giving

Ta − Td = Tb

(
Vb
Va

)γ−1
− Tc

(
Vb
Va

)γ−1
=

(
Vb
Va

)γ−1
(Tb − Tc) (17)

It follows that

ε = 1 +
Ta − Td
Tc − Tb

= 1 +

(
Vb
Va

)γ−1
Tb − Tc
Tc − Tb

= 1−
(
Va
Vb

)1−γ

(18)

i.e., the efficiency is a function of the compression ratio Vb/Va. Since 1 − γ < 0, the efficiency is
higher for an engine with a higher compression ratio.

From the adiabatic relation for an ideal gas, PaV γa = PbV
γ
b , we obtain (Va/Vb)

γ = Pb/Pa. The
equation of the states for an ideal gas, PV = nRT , leads to PaVa/Ta = PbVb/Tb, thus we have
Pb/Pa = (VaTb)/(VbTa). It follows that(

Va
Vb

)γ
=
Pb
Pa

=
Va
Vb

Tb
Ta

→
(
Va
Vb

)1−γ

=
Ta
Tb

(19)

The efficiency can now be written as

εOtto = 1− Ta
Tb

(20)

By noting that in the isovolumetric process, B → C, we have Pc > Pb, thus Tc = Tb(Pc/Pb) > Tb
and Ta/Tb > Ta/Tc. It follows that

εOtto = 1− Ta
Tb

< 1− Ta
Tc

= εCarnot (21)
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and the Otto engine is less efficient than the Carnot engine.

3) In the Otto cycle, the volume ratio in the expansion, C → D, is identical to that for the com-
pression, A → B, and is given by Va/Vb. Some hybrid cars use Atkinson cycle where the volume
ratios are different. This is realised by changing the timing of exhaust or/and intake and also called
Miller cycle. In order to compare its performance with the Otto cycle, we consider the Miller cycle
to use the same volume of air-gasoline mixture gas, Va, for the adiabatic compression and the con-
dition for ignition, i.e. the adiabatic compression of the air-gasoline mixture starts at A(Pa, Va, Ta).

The Miller cycle shown in the P-V plot below is the following:

i) At A, the piston is somewhere in the middle of the cylinder. The volume, Va, is filled with
the air-gasoline mixture and all the valves are closed.

ii) The piston moves up to the top (B) and the gas is ignited and explodes (B → C).

iii) The piston is pushed down (C → D′) and reaches the lowest position of the cylinder (D′).

iv) The piston goes up to exhaust the burnt gas (exhaust valve open) and goes down to take in
the air-gasoline mixture (intake valve open), which corresponds to the isovolumetric reduction
of the pressure, D′ → A′, where at A′ the cylinder is back at the lowest position.

v) When the piston starts to move up, the intake valve is still open, thus isobaric compression
starts till arriving at A where the in-take valve closes.

vi) Back to the original state and ready for the next cycle.

Figure below is the P-V plot for a Miller cycle, together with an equivalent Otto cycle.

Exercise 3.png

Show that an engine with Miller cycle (A→ B → C → D′ → A′ → A) is more efficient than that
with Otto cycle (A→ B → C → D → A).

Solution:

The figure above shows the P-V plots for the Miller cycle (A → B → C → D′ → A′ → A) and
Otto cycle (A→ B → C → D → A) to be compared. Since the initial volume and pressure of the
airgasoline mixtures are same, we assume that the two cycles start with the same amount of gas
molecule from A.

As discussed previously, the area surrounded by a cycle on the P-V plane gives the total work.
Therefore, the total work for the Otto cycle, WOtto

total , is less than that of the Miller cycle, WMiller
total ,

i.e. WOtto
total < WMiller

total .
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Now we consider the entropy. Entropy changes for A → B, C → D and C → D′ are zero, for
B → C, D → A and D′ → A′

∆Sbc = nCV ln
Tc
Tb
,∆Sda = nCV ln

Ta
Td
,∆S′da = nCV ln

T ′a
T ′d

(22)

and for A′ → A,

∆Sa′a = nCP ln
Ta
T ′a

(23)

Since Pb < Pc, and from PV = nRT we have Tb < Tc, thus ∆Sbc > 0.

Similarly, from Pa < Pd, P ′a < P ′d and Va < V ′d we obtain Ta < Td, T ′a < T ′d and Ta < T ′a, thus
∆Sda < 0, ∆S′da < 0 and ∆Sa′a < 0.

PV γ = constant in the adiabatic process and PV = nRT lead to Ta < Tb and Td < Tc. It
follows that the S − T plots for the Otto cycle (A → B → C → D → A) and Miller cycle
(A→ B → C → D′ → A′ → A) can be drawn as

Exercise 3-2.png

The thermal energy flow into the engine, Qin, is the positive heat in the system given by the area
below the B → C line for both Otto and Miller cycles, thus QOttoin = QMiller

in . The efficiency of an
engine is given by

ε =
Wtotal

Qin
(24)

From WOtto
total < WMiller

total and QOttoin = QMiller
in follows that the Miller cycle is more efficient.

4) A heat pump is used to warm up a room at temperature T1 by transferring thermal energy from
outside at temperature T2, where T1 > T2 i.e. the outside is colder than the room, using work
done to the heat pump. Show that a heat pump is more economical than heating the room directly
with the work by computing the efficiency ("Coefficient of Performance") of the heat pump using
the Carnot cycle.

Solution:

If we operate the Carnot cycle in the reversed order, A → D → C → B → A, heats for D → C
and B → A, Qdc and Qba, respectively, are given by

Qdc = nRT2 ln
Vc
Vd

> 0 and Qba = nRT1 ln
Va
Vb

< 0 (25)
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and similarly for the work, A→ D, D → C, C → B, and B → A

Wad =
PbVb
1− γ

[(
Vc
Vb

)1−γ

− 1

]
,Wdc = nRT2 ln

Vc
Vd
,

Wcb =
PbVb
1− γ

[
1−

(
Vc
Vb

)1−γ
]
,Wba = nRT1 ln

Vd
Vc

(26)

The total work is then given by

Wtotal = Wad +Wdc +Wcb +Wba = nR(T2 − T1) ln
Vb
Va

(27)

The efficiency of a heat pump given as

εheat pump =
thermal energy given to the heat reservoir with T = T1

total work given to the heat pump
(28)

leads to

εheat pump =
Qba
Wtotal

=
nRT1 ln Va

Vb

nR(T2 − T1) ln Vb

Va

=
T1

T1 − T2
> 1 (29)

Since εheat pump > 1, heat pump works more efficient than converting directly the work given to
the heat pump, Wtotal, directly to the thermal energy to heat the room. Note that for heat pumps
and refrigerators, ε is typically called "Coefficient of Performance", Because these devices move
heat rather than convert it into work, their performance is not bounded by 1 like a heat engine’s
efficiency.
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