
General Physics II: Tutorial Material

Lecture 14 (Chapter 11 – Heat transfer and Review)

1) Black body radiation: A black body is an object at equilibrium with the radiation it emits.
This radiation is characterized by the fact that the internal energy density depends only on the
temperature at thermal equilibrium. The internal energy of this radiation is given by:

Eint(S, V ) =
3

4

(
3c

16σ

)1/3

S4/3V −1/3 (1)

where sigma is the Stefan Boltzmann constant (see lecture).

a) Determine the free energy F (T, V ) of this radiation.

b) Show that the internal energy U(S, V ) of the radiation can be obtained by performing an
inverse Legendre transformation on the free energy F (T, V ) (i.e. Eint(S, V ) = F + ST ).

c) Find expressions for P (T, V ) and P (S, V ) for the radiation pressure.

Solution:

a) We can obtain the temperature of the black body via

T (S, V ) =
∂Eint(S, V )

∂S
=

(
3c

16σ

)1/3

S1/3V −1/3 (2)

When inverting this relation we obtain the radiation entropy S(T, V ) as a function of T and
V:

S(T, V ) =

(
16σ

3c

)
T 3V (3)

When substituting this result into the expression for the internal energy of the radiation Eint,
we find: Eint = 4σ/cT 4V .
The free energy can be obtained from Eint and the above expressions for T and S via

F = Eint − TS = −4σ

3c
T 4V (4)

b) We can estimate the entropy for the black body radiation from the free energy F

S(T, V ) = −∂F
∂T

=
16σ

3c
T 3V (5)

When inverting this relation, we obtain the radiation temperature T (S, V ), i.e.:

T (S, V ) =

(
3c

16σ

)1/3

S1/3V −1/3 (6)
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When substituting for T in the radiation free energy F (T, V ), we find:

F = −1

4

(
3c

16σ

)1/3

S4/3V −1/3 (7)

c) According the the definition in Lecture 8, the black body radiation pressure P (S, V ) can be
derived from the internal energy via:

P (S, V ) = −Eint(S, V )

∂V
=

1

4

(
3c

16σ

)1/3

S4/3V −4/3 (8)

And the radiation pressure P (T, V ), i.e. P is a function of T and V, can be derived from the
free energy F via:

P (T, V ) = −∂F (T, V )

∂V
=

4σ

3c
T 4 (9)

2) Exercise taken from a previous exam:
We consider a system of two solid bodies, A and B, with their masses, mA and mB , and specific
heats per mass, cA and cB , respectively. And their initial absolute temperatures are TA and TB .
Now the two bodies are put together under thermal contact while the system is thermally isolated
from the environment.

a) Using the 1st law of thermodynamics, calculate the temperature Tf , when the system has
reached thermal equilibrium.

b) Show that Tf is always in between TA and TB .

c) Calculate the entropy changes for A and B, ∆SA and ∆SB , between the initial and the final
thermal equilibrium states.

d) From ∆SA and ∆SB obtained above, show that the total entropy change, ∆SA+∆SB , is always
≥ 0.

Solution:

a) The system consisting of the two blocks A and B is thermally isolated and undergoes no
deformation during the process. So, from the first law we know that ∆Eint = 0. Since A and B
are subsystems, ∆Eint = Eint,A +Eint,B . The work on each subsystem is zero, so that in the end
QA = −QB . The heat changes are given by QA = mAcA(Tf − TA) and QB = mBcB(Tf − TB),
respectively. We can hence write

mAcA(Tf − TA) +mBcB(Tf − TB) = 0. (10)

This leads to
Tf =

mAcATA +mBcBTB
mAcA +mBcB

(11)

b) By introducing TA − TB = ∆T , Tf can be written as

Tf = TA −
mBcB∆T

mAcA +mBcB
= TB +

mAcA∆T

mAcA +mBcB
(12)
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where clearly
0 <

mBcB
mAcA +mBcB

< 1 and 0 <
mAcA

mAcA +mBcB
< 1 (13)

Thus, if TA − TB = ∆T > 0, Tf > TB and Tf < TA. And if TA − TB = ∆T < 0, TA < TB and
Tf < TB , i.e. Tf is always in between TA and TB .

c) The conductive heat transfer occuring when the two blocks come into direct contact is an
irreversible process, since their temperatures are different and there is a jump in T at the boundary.
However, when considering each block separately, we can calculate the heat transfer coming from
the other block as if it were reversible, by viewing the other block as a heat reservoir and supposing
that the heat transfer occurs in a quasi-static fashion. Using dS = dQ/T = mc · dT/T (where dQ
is the heat flowing to or from the other block), we then get

∆SA =

∫ Tf

TA

mAcAdT

T
= mAcA ln

Tf
TA

and ∆SB =

∫ Tf

TB

mBcBdT

T
= mBcB ln

Tf
TB

(14)

Bonus: The formal justification for why we can compute the transfer in each block as if it were
reversible is similar to what was done in previous exercises, namely to replace the irreversible
process that we can’t deal with by a reversible one that reaches the same final state. It goes as
follows: focus on e.g. the block at lower temperature. Rather than coming into direct contact with
another finite block which has a higher temperature, consider that it instead comes into contact
with a sequence of thermal baths at increasing temperatures. At each step of this procedure, the
temperature difference is arbitrarily small and the transfer can thus be considered reversible. At
each step, an amount of entropy dS = dQ/T is transfered, where T is the temperature of the bath.
Once the block reaches Tf , the total entropy transfered is given by the sum of these dS, which
results in the integrals written above.

d) The total change of entropy is given by ∆Stot = ∆SA + ∆SB . By introducing x = TB/TA,
where the range of x is from 0 to ∞,

Tf =
mAcA +mBcBx

mAcA +mBcB
TA =

mAcA +mBcBx

(mAcA +mBcB)x
TB (15)

thus
Tf
TA

=
mAcA +mBcBx

mAcA +mBcB
and

Tf
TB

=
mAcA +mBcBx

(mAcA +mBcB)x
(16)

and ∆Stot can be written as

∆Stot = (mAcA +mBcB) ln
mAcA +mBcBx

mAcA +mBcB
−mBcB lnx. (17)

At x = 1, i.e. TA = TB = Tf , ∆Stot = 0, which makes sense: since if there is no temperature
difference between the blocks, they are already in thermal equilibrium and nothing happens.

By taking derivative of ∆Stot respect to x, we obtain

d∆Stot

dx
=
mAcAmBcB(x− 1)

(mAcA +mBcBx)x
(18)

leading to d∆Stot/dx < 0 for x < 1 and d∆Stot/dx > 0 for x > 1, i.e. from x = 0 to 1, ∆Stot is
monotonically decreasing until it reaches 0 at x = 1, then monotonically increasing from x = 1 to
∞. Therefore ∆S ≥ 0.

Note that as soon as TA 6= TB , ∆S > 0 for the whole system (both blocks). Since the system was
thermally isolated, this implies that entropy was produced within the system, which shows that
the process was indeed irreversible.

3) Exercise taken from a last year’s exam: Atkinson Cycle
James Atkinson was a British engineer who designed several combustion engines. The Atkinson
cycle is a modification of the Otto cycle intended to improve its efficiency. The trade-off in achieving
higher efficiency is a decrease in the work performed per cycle. The idealized Atkinson cycle consists
of the following reversible processes
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• 1→ 2: adiabatic compression

• 2→ 3: isochoric heating

• 3→ 4: isobaric expansion

• 4→ 5: adiabatic expansion

• 5→ 6: isochoric cooling

• 6→ 1: isobaric cooling

Assume that the cycle is operated on an ideal gas. The following physical quantities that charac-
terize the cycle are assumed to be known: volumes V1, V2, and V6, pressure P3 and P5, temperature
T5 and the number of moles n of the gas. Analyze this cycle by answering the following questions:

a) Draw the PV diagram of the Atkinson cycle.

b) In which subprocesses is the (reversible) entropy change positive and in which negative? Note
that it can be helpful to draw the TS diagram. Why is a negative entropy change not violating
the second law?

c) Now suppose that the adiabatic expansion process (4 to 5) is replaced by an isothermal expan-
sion process at constant temperature T4, and assume to have a van der Waals gas instead of ideal
gas, with P = nRT

V−nb − a
n2

V 2 and with Eint = CV T − an2

V . Compute the work done in this process,
heat transfer and its entropy change - all quantities as a function of V4, V5, and T4. Also indicate
whether the heat transfer and the change in entropy is positive or negative.

Solution:

a)

There is no entropy change during the adiabatic processes, as dQ = 0.

b)
Isochoric processes:

∆S23 =

∫ S3

S2

dS = nCV

∫ T3

T2

dT

T
= nCV ln

(
T3
T2

)
(19)

∆S56 =

∫ S6

S5

dS = nCV

∫ T6

T5

dT

T
= nCV ln

(
T6
T5

)
(20)

Since T3 > T2, ∆S23 is positive, whereas ∆S56 is negative since T6 < T5.
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Isobaric processes:

∆S34 =

∫ S4

S3

dS = nCP

∫ T4

T3

dT

T
= nCP ln

(
T4
T3

)
(21)

∆S61 =

∫ S1

S6

dS = nCP

∫ T1

T6

dT

T
= nCP ln

(
T1
T6

)
(22)

Since T4 > T3, ∆S34 is positive, whereas ∆S61 is negative since T1 < T6.

A negative entropy change in reversible processes is solely due to heat exchange with the envi-
ronment. The second law states that for isolated/adiabatic systems, i.e. with no heat exchange
with the environment, the entropy cannot decrease dS ≥ 0 (due to entropy production within a
system). However, in this exercise, we are not considering an isolated/adiabatic system, thus, the
entropy change can be negative.

c)

W45 =

∫ V5

V4

PdV =

∫ V5

V4

(
nRT4
V − nb

− a n
2

V 2

)
dV (23)

Solving the integrals yields:

W45 = nRT4 ln

(
V5 − nb
V4 − nb

)
− n2a

(
1

V4
− 1

V5

)
(24)

The change in internal energy is given by (note that the CV ∆T term is zero due to the isothermal
process):

∆Eint,45 = Eint,5 − Eint,4 = n2a

(
1

V4
− 1

V5

)
(25)

Applying the first law, we obtain for the heat transfer:

Q45 = ∆Eint,45 +W45 (26)

= n2a

(
1

V4
− 1

V5

)
+ nRT4 ln

(
V5 − nb
V4 − nb

)
− n2a

(
1

V4
− 1

V5

)
(27)

= nRT4 ln

(
V5 − nb
V4 − nb

)
> 0, (28)

which is positive, i.e. heat is added to system as expected for an isothermal expansion process.

We can also express the heat Q via:

Q45 =

∫ 5

4

TdS = T4

∫ S5

S4

dS = T4∆S45 (29)

Solving for ∆S45, we obtain the entropy change:

∆S45 =
Q45

T4
= nR ln

(
V5 − nb
V4 − nb

)
> 0 (30)

This means the entropy is increasing during a reversible isothermal expansion process.

To practice a bit more TD potentials:

4) To practice a bit more TD potentials: Pressure in a Soap Bubble: A soap bubble is a system
consisting of two subsystems. Subsystem (f) is the thin film and the subsystem (g) is the gas
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enclosed inside the film. The surrounding air is a thermal bath. The equilibrium is characterized
by the minimum of the free energy F of the system. The differential of the free energy dF reads:

dF = −(Sg + Sf )dT + 2γdA− (P − P0)dV, (31)

where a is the surface area of the soap film and V the volume of the bubble. The parameter γ is
called the surface tension. It characterizes the interactions at the interface between the liquid and
the air. Since the soap film has two such interfaces, there is a factor 2 in front of the parameter
γ. The surface tension γ is an intensive variable that plays an analogous role for a surfacic system
as the pressure P for a volumic system. However, the force due to pressure of a gas is exerted
outwards whereas the force due to the surface tension is exerted inwards. This is the reason why
the signs of the corresponding two terms in dF differ. The term P − P0 is the pressure difference
between the Pressure P inside the bubble and the atmospheric pressure P0. Consider the bubble
to be a sphere of radius r and show that

P − P0 =
4γ

r
(32)

Solution:

We know from the lecture that the equilibrium state of a system coupled to a thermal bath is
characterized by the minimum of the free energy F , which translates mathematically to dF = 0.
Since the surrounding air is a thermal bath, the temperature is constant, i.e. dT = 0, so that the
variation of F reduces to

dF = 2γdA− (P − P0)dV, (33)

For a spherical bubble, the area differential is given by:

dA = 4π(r + dr)2 − 4πr2 = 4π(2rdr + dr2) ≈ 8πrdr, (34)

where we neglect the second-order term in dr2. Equivalently, we can get the differential directly
from the derivative of the area d

dr

(
4πr2

)
= 8πr =⇒ dA = 8πrdr. The volume differential is given

by:

dV =
4π

3
(r + dr)3 − 4π

3
r3 =

4π

3
(3r2dr + 3rdr2 + dr3) ≈ 4πr2dr, (35)

where we neglect the second-order term in dr2 and the third-order term in dr3. Again, using the
derivative instead we immediately get d

dr

(
4
3πr

3
)

= 4πr2 =⇒ dV = 4πr2dr.
At equilibrium, the free energy F is minimized, thus,

dF = 16πγrdr − 4π(P − P0)r2dr (36)

=
(
16πγr − 4π(P − P0)r2

)
dr

!
= 0, (37)

which implies that the term in parentheses must vanish. Setting it to 0 and rearranging yields the
result,

P − P0 =
4γ

r
. (38)

5) Gibbs-Helmholtz equations: Show that

a)

Eint(S, V ) = −T 2 ∂

∂T

(
F (T, V )

T

)
(39)

where T = T (S, V ) is to be understood as a function of S and V .

b)

H(S, P ) = −T 2 ∂

∂T

(
G(T, P )

T

)
(40)

where T = T (S, P ) is to be understood as a function of S and P .
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Solution:

a) The internal energy is related to the free energy F and expressed in terms of the state
variables S and V as

Eint(S, V ) = F (T, V ) + TS (41)

Using the definition S = −∂F
∂T (see lecture notes) and the chain rule, it can be recast as:

Eint(S, V ) = F (T, V )− T ∂F (T, V )

∂T

= −T 2 ∂

∂T

(
F (T, V )

T

) (42)

b) Likewise, the enthalpy H is related to the Gibbs free energy G and expressed in terms of the
state variables S and P as

H(S, P ) = G(T, P ) + TS (43)

Using the definition S = −∂G
∂T (see lecture notes), and the chain rule, it can be recast as:

H(S, P ) = G(T, P )− T ∂G(T, P )

∂T

= −T 2 ∂

∂T

(
G(T, P )

T

) (44)
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