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•What is a thermal machine?

•This is a TD system if it performs a heat transfer 
between two thermal baths 


•allowing for mechanical work being done by 
system on the environment and vice versa

•by means of a machine that periodically passes 
though the same state (cycle of distinct 
processes)


•What is an equivalent formulation of 2nd law of TD? 

•Perpetual motion machine of the 2nd kind does not 
exist (as Entropy change would be negative)

Recap Chapter 9… — Thermal machines



•What is the set up and efficiency of a thermal 
machine? 


•Heat taken from hot reservoir, Work 
conducted on environment, heat given 
back to cold reservoir

•Efficiency of heat engine smaller than 1:

Recap Chapter 9 — Thermal machines

•Best possible engine, equality for 
reversible processes only

•Note that in nature most (macroscopic 
processes) are irreversible (friction) —> 
reducing epsilon



Recap Chapter 9— Carnot cycle

•Summed work during adiabatic processes is zero, thus the total work is the sum of the work 
during isothermal processes: 

•Efficiency of Carnot process is the maximum efficiency allowed by second law of TD, given 
by:

•How does the Carnot cycle work? Plot the PV and TS diagrams of the Carnot 
cycle. What is the summed work/heat? What is the efficiency?



•How do refrigerators, ACs and heat pumps work and what is their efficiency?


• the reverse of a heat engine transferring heat from a cool to a hot 
environment by work done on the system. 


• lower and upper limits for the integration of heat and work must be 
exchanged


• signs of heat and work must be flipped


•Efficiency of these machines:

Recap — Refrigerators, heat pumps, perpetual motion machines
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✏heatpump =
thermal heat put into hot heat reservoir T = T1

total work given to the heat pump
=

T1

T1 � T2

•No “miracle” perpetual motion machine possible with putting together one Carnot 
engine and a reversed one: irreversibility and friction, non-ideal gases, no perfect 
insulation, isothermal processes hard to achieve etc.



Recap Chapter 9— Which other thermal engines do you know?

•Stirling engine: external combustion engine, cycle composed of two isothermal 
and two isochoric processes (e.g. used for cryogenic cooling, same efficiency as 
Carnot, quiet, low emission but complex design, low-power-weight ratio, limited 
high-T use)

•Otto engine: internal combustion engine, cycle composed of two adiabatic and 
two isochoric processes (e.g. often used in cars, high power-to-weight ratio, fast 
response —> quick acceleration, low noise and vibration but lower efficiencies, 
higher emissions, potential overheating)

•Diesel engine: internal combustion engine, cycle composed of two adiabatic, 
one isochoric and one isobaric process (higher fuel efficiency, longer life time, 
but noisier and slower response, challenging start at low T)

•Efficiencies are lower than that of Carnot (except for Stirling).



Content of this course — today’s lecture
Lecture 1: —Chapter 1. Introduction
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Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes


Lecture 7: — Mock exam I with Dr. Tress


Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 


Lecture 12: —Mock Exam II with Dr. Tress

Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)


Lecture 14: —Final review and open questions



10. Thermodynamic potentials and equilibria

• 10.1 Basic relations of TD

•Chemical potential

•Gibbs (fundamental) relation

•Euler equation

•Gibbs-Duhem relation


• 10.2 Thermodynamic potentials and exact differentials

• 10.3 Enthalpy H

• 10.4 Free Energy F

• 10.5 Gibbs Free Enthalpy G

• 10.6 Equilibrium of subsystems coupled to a reservoir



10.1 Basic relations of TD
1. law : dEint

= dQ-da -

II

dEint =TaS-O always valid

equality only for revessible
Eint (S, U) processes
-

din=tasd
La u

= = T -- P

valid for a closed system !

Open system : matter exchange with environment

Chapter 7 : dEint = dQ-dw +&C
↓

C : totallnot chemicalpotential



Matter transportA chemicalpotential :

= Mi digmosofsubstancei
S Isumover Ntypes

ofsubstances involved dienicalpotential
gsubstance i permol [Tmol]

M:: energy to addI remove any moles of a substance ;
to /from the system (dW =0

,
dQ = 0)

Mi=
Every diemical reaction can be described by removing



initial substances & addingfinal oues.
E

.g.. 2H + 0 - 20 ; 2M +11-24
↳
-Mining

* T diff. -heatHow
* Poly- -- workglow
* diff in demical potential

- matterflow

(naturallalwaysmovingfrow
i higheroa

Examples :
① Diffusion : Partides morefrom regionsofhigher concentr
= higherM) to regions of lower concentration (lowar



② Phase transitions

Mass movesfrom a phaseof higheM to that with
a lowere ; e.g

. water evaporating at T-100C
& atmospheric pressure.

mass flow stops , onceno diff. places equalise
or when out phase is fully concerted into another

③Chemical readious

Reactants courent into products becauseof products
is lower than than thato reactants
stops onceMo products is equal to thatof reactants.



PutdC into 1 law:

dEint = TaS-Paud
d[

Gibbs'fundamental relation
Eint = Eint (S

,

U
, m)

Another basic relation : Enter equation algebraic rel)

Eint = TS-PU+Fin;



Derivationof Enter equation :

Consider a system consistingof X ideatical subsystems,
exh with its S

,
O
,n

total entropy : XS=>

total volime : xo]dince S, 0, ntotalofmoles : To are extensive

Eint(XS
,
XV

, xw) = x Ein (S , 0, n)
Delicative to X, :
+



=En

Since S,
U
,
n are independentof X , we obtain

> S++  = Eat

-

Trick : has to befulfilledfor Ziall x - choose x =1

=> Eint=Sti
je Zu ;

↳ - ↳
- -
=/ -- =

Mi



Eint = TS-potMini A
Third basic relation :

Differentiate the Enter equation :

EintEss--pduce
Gibbs fundamental relation
~
tofutil= Sat-Jap +Indu, =O

Gibbs-Dhem relation



•Chemical potential:




•Gibbs fundamental relation:




•Euler relation:




•Gibbs-Duhem relation:


Summary 10.1 — Basic relations of TD

first law open syste



10.2 Thermodynamic Potentials and Exact Differentials

Physical meaning motivationof To potentials :

· analogue role as polentials in classicalmedicaics
Force derived fromgradientof a potentialU :

E = EU

=> gravitational poltial : U =-
M on

#
r
-

torces lead to

Fgrau= movementsofparticle



TD potentials :

Gradients/ derivatives of TDpoleutials result in
state variables (T, P.. ) close change indice
TD processes (expacsic, heating..)
L until system is in equilibrium via reading

minimumof a TD potential

Example : Eint is a TD polential

dEint=ntas
2
2

=T ==P



Mathematical concept of thermodynamic potentials

follows mathematical definition an exact differential :
Keyof an exact differential:
* describes a quantityyet that can be integrated
along any path between two points with thesame result.

+ aj
= Pdx + Qdy with P= a =(

is an exactdifferential,if there exists a well-defined
scalenjat((x ,x) jutfilling(),



this maans :

=) =

Schwarte theorem )
Example ((x ,y) = 3xx
then p=

y
= 3y = a=x

= 3x

) =3 = )y =3

df(xxy) is an exact differential



Conterexamplefor an inexact diferential:

a =yax
-xdyi =y=za

&

2J
-P

↓ Q

y = 1 # x = - 12. inequal

is an inexact differential!
Exact differential Eint :

dEins
= T =- p



T=ni=Min
Let's apply the Schwarte theorem to Eint :

=-)
=T
-usinzu ; au

Maxwell equations



Natural variablesof a TDpotential:

TD polulial jutly determined,if naturalvariablesone
Specified (S, U, n for Eini), &
if dependent variables I Einti T, P,n) be derived
from derivatives of the TD potential to the naturalranc

for Eint : S, 0, n

Counter example : Eint (T
,
0
,
u)

dEint=nat doda
I
=C Tcannot be a natural variable

as S would not be obtained.





Mathematically to get other thermodynamicpotentials:
via Legendre transformation

Imagine we have a statejuctic J(x) (e.g . Eint)
with x(x)=

then as Legendic transformis defined asfollows :
g(y) =f(x)

-

XX

I ↓
a diff Eint with variablex

TD poleutial with new variableP
Math operation to transform onejet into another with

thesame information, but expressed via diff. natural variables.



•TD potentials play the analogue role as that in classical mechanics: 
Gradients of TD potentials result in state variables (V, P, T, S, …) whose 
change introduce a TD process (e.g., expansion)

➡TD process continues until TD system is in equilibrium, via 
reaching minima of TD potentials under given conditions.


•Thermodynamic potentials are mathematically exact differentials 

fulfilling the Schwartz theorem , describing a fct. f that can 
be integrated along any path between two points with the same result.

•Natural variables of a TD system allow for


•a complete description of the potential

•a direct derivation of remaining state variables from the 
derivatives of the potential with respect to the natural variables.

Summary 10.2 — Thermodynamic Potentials & Exact Differentials



•Applying the concept of exact differentials, the Schwartz theorem, 
to TD potentials results in the Maxwell equations.

•Example for TD potential: internal energy Eint with natural variables 
S, V, n:

Summary 10.2 — Thermodynamic Potentials & Exact Differentials

with

•Maxwell relations for Eint: 



10.3 Enthalpy H

defined as a Legendre transformof Fint c .
r. t. O.

-P: H = Fin +Pu
/ Il 1X

gly) ((x) Y
=>utWithEnter equation 2

H= Ts-+Min;
= TS +Ih;4;

differentian of H :d +Par+ GAP

↳Has-u+Midni+Vap
dEint



dH = TdS +UP+Midu ;
Natural variables 8 H : S

,
P
,
n

an = ) p4s +)
,

P+
Dependent variables :
=Ev=Mi=s,
Maxwell relationsfor H :

==
S
,u

-> remaining Maxwell equatio as home exercise



Example
: morable wall

work res
.

at all times !·
closed system in equ. with

Heat added to system, eus
at coustP -> isobaric process

dEint = dQ-dW

dQ = dEint +dW= dEint +PdU =dE
=d

dP=0

↳ Q = AH Heat added at coust P =

increase inI

At=H = Hj-Hi



The heat provided to a sysh, kept a court t,
is equal to the difference inIt.

(ke-call. for Eint : dEint = &Q for isocoric
process ,i.e.
au= o)



10.4 Free Energy F
Helmholtz

defined as Legendre transformof Fint c.

r
.

t. S :

S - T : F= Eint-S
/ =

differentializoff:
dF = dEint-TaS-saT

=Fas-PdU + [Midii-FS-sdT
=
- SaT-Pau+FMida ;



Natural variables ofF : T
,on

aft
=
-S ==P =Mi

Maxwell relations

=-En
do remaining Maxwel relations as home exercise!



Example :

Work exerted on a closed system,
in equilibrium with a thermal resuvoir

-> isothermal process

#runa
= dEint-TaS =

=d/Eint-TS) = dF
-
=F

AF = -W -

AF=F = F -Ti



Wok performedon a system , kept at coust
T

,
is equal to the increase in F

(Recall : Fint : dint = -dW for adiabatic
processes &



10.5 Gibbs Free Enthalpy G-
-

or Gibbs free energy

Legendre transform of Eint w.
r
.

t
. S &U

orI ort. S

S-T ; -P G = Fin++PO-TS =H-TS
-

If
Differentiation of 6 :
dG = dH-TaS-SAT
&
&
= Fas +Vap +Fridni-Fas-sdT
=
- saT+ Vap+Frid;

Natural variables of G :
T
,
P
,
n



a = (e) T+Pada
Compute dependent variables via partial derivatives

g G to its natural variables :
-- s= u=Mi
--

Maxwell relation for Glapplying Schwart theorem toG) :
G=-a

=



=)ii
Relevanceof Gibbs'potential :

very important for decristy (readin happen ofhe
at coust+& T)

G = H - TS = Eit +PV-TS

TS- +z -F : Min ;
Enter rel

for Eint G=Min ; denotedformally as

↳ Gibbs'polential= total diemicelpot.



•Enthalpy H = Eint + PV: natural variables are S, P, n 



•Free Energy F = Eint - TS: natural variables are T, V, n



•Gibbs/Free Enthalpy G = Eint - TS + PV: T, P, n

Summary 10.3-5 — Enthalpy, Free Energy, Gibbs Free Enthalpy



10.6 Equilibria of subsystems coupled to a reservoir

Characterising the approach to equilibrium
g asystem composed of twosimple subsysh

1+2

coupled to a reservoir (in equilibrium with reservoit

S = S +Siv= u +Vin =

m
+z

TD potentials : Einf = Eint
,
1
+ Eint

,
z

also exten

T3 nautities.9

G = Gi +Gz



1. Minimum of free energy

Two subsystems are kept in thermal equilibrium
with a heat reservoir at cost.T

Tres =T =Tz =T

morable wall

0= U+Uz = coustI
proce to mea

(system is rigid)

equilibriuma-e



change of total free energy
:

dF = dEint ES

Because U= court -> any
total mechanicalwork
is vanishing dw =0

L dF = dQ-TAS =Q-TaSpinQ
dSprod

=

-TaSprod O
↳
70

=> dF EO at coust GAT



Inequality describes the decreaseoffree energy
when approaching mechanical equ at coastor

Final equilibrium states is charaderised by a coustF,
aF= 0 & F being a minimum

I a rigid system is kept at court t
,
the

mechanical equ. State (between 192 in minimising
Fof the system.



2. Minimum of enthalpy

Two subsystems in mechanical equilibrite with a
work reservoir Pres = P = Pi =P

action o reservoir onS
stee is assumed to#recessible sucta

movable
I entropy S =S+SFast

wall via a diathermal ITTz
Creversible) wall -> approach to

thermal equilibriumat
coasti S



change of total eathalpy when moving to equil
.

at count P&S

dH = dEinttPAV= dQ-d+= dQ
Tar

How to constrain &Q ?

as =0 -- +&Spod = 0 CentrBy
balance

-> = -Spod 0 equ?)-= O

-> dQ <O Since dH = dQ -- dH-0

at constP&S



Inequality describes the decrease in t while approachin
thermal equilibrium at court P& S

Final equilibrium state : H = const
,
dit =0

A being minimal

I a System is keept at coust↑ & at courts&
then the thermal equ. between 142 minimises
Hof the system
.



1. Minimum of Gibbs enthalpyB.

Closed system , composedof two subsyste , which
both in therural & medianical equ, with a heat &wot

reservoir Tres =T = T=T

I
Heat &

Pres = Pr = Pz =P

workIfixed ,
non-diathema,a
permeable wall

S
-> materHow

worable n = n + m =coust
diathermal
wall yu- approach to

diemiad equilibria
at coustT&P



changeof total Gibbs enthalpy G :

dG = dEint-TaS +Par
= da-dar-Tas+=-Tas,II

= dQ-dR-TdSoSpe
=> dG = - TaSpod O

The inequality describes the decrease in G

when approading dremical equ ,

via an irreversible

matter trausen between 192 while kept at cost-

D& /

Final equilibrium: dEFO ,
G is minimal (dG >0)



If a closed system is kept at coustP&T, then
chemical equ,

is reached by minimising the
Gibbs polental G .



• Think of thermodynamic potentials as the “right form” of energy to track when 
certain variables are held fixed.


• Systems spontaneously evolve to minimize the relevant potential under the given 
constraints.


• Analogy: Just like a ball rolls down a hill to minimize gravitational potential energy, a 
system ‘rolls down’ its thermodynamic potential to equilibrium.

Typical thermodynamic potentials

Eint Eint



Minimization principles are a fundamental concept in thermodynamics and 
underlies the behavior of thermodynamic systems approaching equilibria 
states.

• At constant S and P, the thermal equilibrium state of a system 
corresponds to a minimum in the enthalpy H, i.e. the system naturally 
evolves towards a state where H is as low as possible.


• At constant T and V, the mechanical equilibrium state of a system 
corresponds to a minimum in the free energy F, i.e. the system naturally 
evolves towards a state where F is as low as possible.


• At constant T and P, the chemical equilibrium state of a system 
corresponds to a minimum in the Gibbs/free enthalpy G, i.e. the system 
naturally evolves towards a state where G is as low as possible.


(For the internal energy, this is true at constant S and V)

Summary 10.6 — Equilibria of (sub)systems coupled to a reservoir
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