General Physics I
Thermodynamics

Prof. M. Hirschmann

Spring semester 2024
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Recap Chapter 9... — Thermal machines

\What is a thermal machine?

*What is an equivalent formulation of 2nd law of TD?
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Recap Chapter 9 — Thermal machines (?)
*What is the set up and efficiency of a thermal
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Recap Chapter 9— Carnot cycle (?)

How does the Carnot cycle work? Plot the PV and TS diagrams of the Carnot
cycle. What is the summed work/heat? What is the efficiency?
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Recap — Refrigerators, heat pumps, perpetual motion machines(?)
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Recap Chapter 9— Which other thermal engines do you know? (?)



Content of this course — today’s lecture

Lecture 1: —Chapter 1. Introduction
—Chapter 2. Temperature and zeroth law of thermodynamics

Lecture 2: —Chapter 3. Gas laws

Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)
—Mathematical Excursion — Preparation for Chapter 5.

Lecture 4: —Chapter 5. Statistical thermodynamics Il (Boltzmann factor, Maxwell-Boltzmann distribution)
Lecture 5: —Chapter 6. Energy, heat and heat capacity

Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes

Lecture 7: — Mock exam | with Dr. Tress

Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics

Lecture 9/10: —Chapter 9. Thermal machines

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria

Lecture 12: —Mock Exam Il with Dr. Tress
Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)

Lecture 14: —Final review and open questions



10. Thermodynamic potentials and equilibria

« 10.1 Basic relations of TD
« Chemical potential
« Gibbs (fundamental) relation
 Euler equation
» Gibbs-Duhem relation
« 10.2 Thermodynamic potentials and exact differentials
«10.3 Enthalpy H
*10.4 Free Energy F
« 10.5 Gibbs Free Enthalpy G
« 10.6 Equilibrium of subsystems coupled to a reservoir



10.1 BaS|c relations of TD
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Summary 10.1 — Basic relations of TD

* Chemical potential:
Z pidn;
* Gibbs fundamental relation: /4(5% / Bl cféf 95@

dEin; = TdS — PdV + Z pidn;
e Euler relation:

B =TS - PV +) pm
* Gibbs-Duhem relation:

SdT — VdP + Z nidp; =0



10.2 Thermodynamic Potentials and Exact Differentials
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Summary 10.2 — Thermodynamic Potentials & Exact Differentials

*TD potentials play the analogue role as that in classical mechanics:

Gradients of TD potentials result in state variables (V, P, T, S, ...) whose
change introduce a TD process (e.g., expansion)

QTD process continues until TD system is in equilibrium, via
reaching minima of TD potentials under given conditions.

* Thermodynamic potentials are mathematically exact differentials

*f  *f
fulfilling the Schwartz theorem 9z9y  9ydz | describing a fct. f that can
be integrated along any path between two points with the same result.

*Natural variables of a TD system allow for

*a complete description of the potential

a direct derivation of remaining state variables from the
derivatives of the potential with respect to the natural variables.



Summary 10.2 — Thermodynamic Potentials & Exact Differentials

* Applying the concept of exact differentials, the Schwartz theorem,
to TD potentials results in the Maxwell equations.

«Example for TD potential: internal energy Eint with natural variables
S,V, n:

OE; dE, OE,
dE;; = ( 8’3’“) ds + ( a{/’”) dv + (Z 67;7t> dn;
V,n S,n K S,V

. . 8Eint . . 8Eint . aE‘int
with 7= (%g*) s p=— (%), mam= (%)

«Maxwell relations for Eint: (9T _ (9P
v ). a5 ),

oT [ Oui
on; v,s_ oS Vin
on; V.S oV Sin




10.3 Enthalpy H

Adped  as o o/%fé/&//@ ﬁﬂ%&/m/ of Gt 7t O

=0
L Zilor epunti: = TE PO +3 Jpa, T
e S ot
b ) (i
é%fﬂéw‘/ﬂw% #o A= Ay + PA T
Co oh =TS — R0+ 5,y T+ Ut
0 T o A A B >

A Erd—




Al = TAS + Oetf+ 2 oo

/48 N I B A — / [ I —

A =(%E% A5 +§%>S///F+ ;bd

@7&54{/@% capa e

T e _ = __94L>
AF =5 Fu ) J = 97>>0\) /M 9“{@%?
M el rEhons //L

= =N ( > ‘&Z>
=< >0 SRS =P /e =>
— b rewannly o] @Wm 2L laree @@/ast




5(%/& : | / woloble il

jwp/z 2 ]‘/”V%/ sl ot 11 Gpa. vt

A oA 2. 2t 2l rnas !

7 Heat aolde 7‘096%4«/ Vo 227
osle é)&é?&t:W ﬁ 2t sous? T —® Mémé /pﬁz%

Aen) = AL AL
A = A&y M= Mg AT = A (Gap 7D A

=7
ol A = A#l 9./ ﬂ/y/@d/&/%%—?\
& A e H-




Tl fent f/ﬂﬂ‘/@/ o o %L/ Ze/%ﬂ @W?
L é/ﬁ%/ +o He difrence Ao H—

/fe—fﬂd: Gt Ay T AR %f 52l
F/ﬁ%/[c

=)



10.4 Free Energy F

Al
d%‘%@/ as 0/%6&(&//6 #ﬂ%/a/w % g Dt S

(=
&%WML %77
AL — Ay — [AS — ST
=%@~Wﬁ+z/a;dn; ~:/7d€— <J)
= = S — /E/U?L%—.\/Mrv/oq



L oke2] ﬂﬂﬂ-ﬁ‘é/ﬂ ﬂ 7 7/7|7//L/\

LR = =t
AF (9T> . T CE&T oVt ST d
Hagwpll rletiovs

=T 2UET W‘T’Z + T )y,

L méwzwg ol ylatzs o lovve o



=3 'ZZO/"' Lok ewted sy 4 A/ﬁd@/%/
i efmlébvﬁ/w ot a Hoyne! sesonsy
‘ —  wotouvaf 7@/5@’/5/5

beot dosed
et % /( é?;@:— =T O/Q —‘M
IV & = e —oAR
/W//,/a&ﬂ%/mw# Gidd
= ( Gy —TE) = A7
T R R k—’féj
iAT: "’&/L: F’EZ\T ?‘% T e 7——,
N = 71__: — /|
ARE= 7



[ A

' 7
A
UrCaso
e
Jo
: azf
| /o éf

“
W I e

,

2 W

e s

f@z perfen

P8
=/ /ﬁf’
AEy)
W 3
( 2%

/&V&a%é (GBS



10.5-Gibbs Free Enthalpy G s S/244« /m«; ga’%
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Summary 10.3-5 — Enthalpy, Free Energy, Gibbs Free Enthalpy } .

*Enthalpy H = Eint + PV: natural variables are S, P, n
OH OH OH
= (55) . 5+ (55),,, 7+ X am),,

OH OH OH
= <ﬁ> Pyn; = <ﬁ) V,ni e (a_ni)S,P

*Free Energy F = Eint- TS: natural variables are T, V, n

= (57),, 17 (57, ¥ + 2 (5.
5= (57) V= (57) g 2= ()
* Gibbs/Free Enthalpy G=En-TS+PV:T,Pn

oG oG oG
dG = (a:r) dT + (ap> dP+zi:<%)T,Pdn

oG oG oG
—S: _— : = _— : i = _—
(aT)p,n’ v <6P>T.n’ hi=D (ani)T,p



10.6 Equilibria of subsystems coupled to a reservoir
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1. Minimum of free energy
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2. M‘inimum of enthalpy
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3. Minimum of Gibbs enthalpy
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Typical thermodynamic potentials

Minimized

Potential Definition Natural variables when...
Erur Cout—

Internal energy U U(S V) Entropy, volume System is

|solated

«* r’ i}’

Helmholtz free energy F=U-TS Temperature, Constant T,V
F volume
Enthalpy H H=U+PV Entropy, pressure Constant S, P
Gibbs free energy G G=U+PV —-TS =H — Temperature, ConstantT', P

TS pressure

« Think of thermodynamic potentials as the “right form” of energy to track when
certain variables are held fixed.

« Systems spontaneously evolve to minimize the relevant potential under the given
constraints.

- Analogy: Just like a ball rolls down a hill to minimize gravitational potential energy, a
system ‘rolls down’ its thermodynamic potential to equilibrium.



£

Summary 10.6 — Equilibria of (sub)systems coupled to a reservoir= I

Minimization principles are a fundamental concept in thermodynamics and

underlies the behavior of thermodynamic systems approaching equilibria
states.

« At constant S and P, the thermal equilibrium state of a system
corresponds to a minimum in the enthalpy H, i.e. the system naturally
evolves towards a state where H is as low as possible.

« At constant T and V, the mechanical equilibrium state of a system
corresponds to a minimum in the free energy F, i.e. the system naturally
evolves towards a state where F is as low as possible.

e At constant T and P, the chemical equilibrium state of a system
corresponds to a minimum in the Gibbs/free enthalpy G, i.e. the system
naturally evolves towards a state where G is as low as possible.

(For the internal energy, this is true at constant S and V)



Up next:

Lecture 1: —Chapter 1. Introduction
—Chapter 2. Temperature and zeroth law of thermodynamics

Lecture 2: —Chapter 3. Gas laws

Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)
—Mathematical Excursion — Preparation for Chapter 5.

Lecture 4: —Chapter 5. Statistical thermodynamics Il (Boltzmann factor, Maxwell-Boltzmann distribution)
Lecture 5: —Chapter 6. Energy, heat and heat capacity

Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes

Lecture 7: — Mock exam | with Dr. Tress

Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics

Lecture 9/10: —Chapter 9. Thermal machines

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria

Lecture 12: —Mock Exam Il with Dr. Tress
Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)

Lecture 14: —Final review and open questions



