

Recap... Chapter 1+2, Temperature and 0th law of TD

- How to characterise T, which scales exist?
- What is meant with thermal equilibrium?
- What is the 0th law of Thermodynamics?

Recap... Chapter 1+2, Temperature and 0th law of TD

- How to characterise T, which scales exist?
 - Temperature is a measure how hot or cold something is (a “state variable”, only dependent of the current state of a system).
 - The temperature of a body is given either as absolute temperature T in Kelvin or Celsius temperature $T_c/C = T/K - 273.25$ (also Fahrenheit scale, less used)
- What is meant with thermal equilibrium?
- What is the 0th law of Thermodynamics?

Recap... Chapter 1+2, Temperature and 0th law of TD

- How to characterise T, which scales exist?
 - Temperature is a measure how hot or cold something is (a “state variable”, only dependent of the current state of a system).
 - The temperature of a body is given either as absolute temperature T in Kelvin or Celsius temperature $T_c/C = T/K - 273.25$ (also Fahrenheit scale, less used)
- What is meant with thermal equilibrium?
 - Thermal equilibrium: if two objects with different T are placed in contact, they may reach the same temperature and are then said to be in thermal equilibrium (not net flow of thermal energy).
- What is the 0th law of Thermodynamics?

Recap... Chapter 1+2, Temperature and 0th law of TD

- How to characterise T, which scales exist?
 - Temperature is a measure how hot or cold something is (a “state variable”, only dependent of the current state of a system).
 - The temperature of a body is given either as absolute temperature T in Kelvin or Celsius temperature $T_c/C = T/K - 273.25$ (also Fahrenheit scale, less used)
- What is meant with thermal equilibrium?
 - Thermal equilibrium: if two objects with different T are placed in contact, they may reach the same temperature and are then said to be in thermal equilibrium (not net flow of thermal energy).
- What is the 0th law of Thermodynamics?
 - 0th law of Thermodynamics: If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.

Recap... Chapter 1+2, Thermal expansion

- What is thermal expansion?
- Which property of T is important that thermometers function? Which materials are particularly well suited for measuring T ?
- Give a physical explanation for the fact that thermal expansion coefficients of liquids are typically larger than that of solids.

Recap... Chapter 1+2, Thermal expansion

- What is thermal expansion?
 - The change in length of a solid, when its temperature changes is directly proportional to the T change (**valid only if T change small!!**)
 - $\Delta l = a l_0 \Delta T$, a : coefficient of linear expansion
 - The change of volume of most solids, liquids and gases is proportional to the T change (**small!!**) and to the original volume $\Delta V = \beta V_0 \Delta T$, $\beta \approx 3a$
- Which property of T is important that thermometers function? Which materials are particularly well suited for measuring T?
- Give a physical explanation for the fact that thermal expansion coefficients of liquids are typically larger than that of solids.

Recap... Chapter 1+2, Thermal expansion

- What is thermal expansion?
 - The change in length of a solid, when its temperature changes is directly proportional to the T change (**valid only if T change small!!**)
 - $\Delta l = a l_0 \Delta T$, a : coefficient of linear expansion
 - The change of volume of most solids, liquids and gases is proportional to the T change (**small!!**) and to the original volume $\Delta V = \beta V_0 \Delta T$, $\beta \approx 3a$
- Which property of T is important that thermometers function? Which materials are particularly well suited for measuring T?
 - Expansion of liquids/gases. The higher the beta and alpha, the better suited for measuring T —> Mercury well suited: uniform thermal expansion over a wide temperature range, high boiling point, & low freezing point.
- Give a physical explanation for the fact that thermal expansion coefficients of liquids are typically larger than that of solids.

Recap... Chapter 1+2, Thermal expansion

- What is thermal expansion?
 - The change in length of a solid, when its temperature changes is directly proportional to the T change (**valid only if T change small!!**)
 - $\Delta l = \alpha l_0 \Delta T$, α : coefficient of linear expansion
 - The change of volume of most solids, liquids and gases is proportional to the T change (**small!!**) and to the original volume $\Delta V = \beta V_0 \Delta T$, $\beta \approx 3\alpha$
- Which property of T is important that thermometers function? Which materials are particularly well suited for measuring T?
 - Expansion of liquids/gases. The higher the beta and alpha, the better suited for measuring T —> Mercury well suited: uniform thermal expansion over a wide temperature range, high boiling point, & low freezing point.
- Give a physical explanation for the fact that thermal expansion coefficients of liquids are typically larger than that of solids.
 - Solids: molecules are tightly bound in a fixed, orderly arrangement (e.g. lattice) —> when heated, the molecules vibrate more vigorously but generally maintain their relative positions, leading to a smaller overall expansion
 - Liquids: molecules are less tightly bound and can move around more freely. —> When heated, these particles move more readily, leading to a more significant increase in volume.

Recap... Thermal expansion

- Linear expansion formula $\Delta l = \alpha l_0 \Delta T$ accurately valid only for infinitely small changes in T
- For n heating steps, i.e. a continuous rise of T , the accurate formula is $l = l_0 e^{\alpha \Delta T}$

Recap... Thermal expansion

How much should I care?

“Not much, unless you melt the solid!!”

Material	Aluminium	Brass	Iron	Lead	Quartz
$\alpha \left(\text{C}^\circ \right)^{-1}$	25×10^{-6}	19×10^{-6}	12×10^{-6}	29×10^{-6}	0.4×10^{-6}

- Melting temperature of:
 - Aluminium – 933 K
 - Iron – 1811 K
- Estimate a 1 meter long iron bar and aluminium bar: assuming linear thermal expansion from room temperature (300 K) to melting point, the length will be:
 - $\Delta L (Al) = 25 \times 10^{-6} / \text{K} \times 633 \text{ K} \times 1 \text{ m} = 0.01583 \text{ m}$
 - $\Delta L (Fe) = 12 \times 10^{-6} / \text{K} \times 1511 \text{ K} \times 1 \text{ m} = 0.0181 \text{ m}$
- Compare your results with that obtained from the precise formula of thermal expansion ...
 - $L(Al) = 1 \text{ m} \times \exp(25 \times 10^{-6} / \text{K} \times 633 \text{ K}) = 1.01595 \rightarrow \Delta L = 0.01595 \text{ m}$
 - $L(Fe) = 1 \text{ m} \times \exp(12 \times 10^{-6} / \text{K} \times 1511 \text{ K}) = 1.0183 \rightarrow \Delta L = 0.0183 \text{ m}$

Conceptual Questions:

- If you heat a thin circular ring in the oven, does the ring's hole get larger or smaller?
youtube demonstration: <https://www.youtube.com/watch?v=nA-WJyq19H8>
- Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water for a short time will often make it easier to open. Why?

Conceptual Questions:

- If you heat a thin circular ring in the oven, does the ring's hole get larger or smaller?
youtube demonstration: <https://www.youtube.com/watch?v=nA-WJyq19H8>
 - When the ring is heated uniformly, all parts of it, including both the material of the ring and the space of the hole, expand. Since the material is expanding in all directions, the metal around the hole also expands outward, making the hole larger.
 - It might seem counterintuitive at first, as one might expect the material to expand and close up the hole. However, it's important to remember that the expansion is uniform in all directions. Each segment of the ring, no matter where it is located, moves outward from the center of the ring as it expands, thus increasing the diameter of the hole.
- Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water for a short time will often make it easier to open. Why?

Conceptual Questions:

- If you heat a thin circular ring in the oven, does the ring's hole get larger or smaller?
youtube demonstration: <https://www.youtube.com/watch?v=nA-WJyq19H8>
 - When the ring is heated uniformly, all parts of it, including both the material of the ring and the space of the hole, expand. Since the material is expanding in all directions, the metal around the hole also expands outward, making the hole larger.
 - It might seem counterintuitive at first, as one might expect the material to expand and close up the hole. However, it's important to remember that the expansion is uniform in all directions. Each segment of the ring, no matter where it is located, moves outward from the center of the ring as it expands, thus increasing the diameter of the hole.
- Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water for a short time will often make it easier to open. Why?
 - Because the metal has a higher expansion coefficient than the glass, thus, it expands more than the glass at higher $T \rightarrow$ easier to open

Conceptual Questions:

- If you heat a thin circular ring in the oven, does the ring's hole get larger or smaller?
youtube demonstration: <https://www.youtube.com/watch?v=nA-WJyq19H8>
- Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water for a short time will often make it easier to open. Why?

Conceptual Questions:

- If you heat a thin circular ring in the oven, does the ring's hole get larger or smaller?
youtube demonstration: <https://www.youtube.com/watch?v=nA-WJyq19H8>
 - When the ring is heated uniformly, all parts of it, including both the material of the ring and the space of the hole, expand. Since the material is expanding in all directions, the metal around the hole also expands outward, making the hole larger.
 - It might seem counterintuitive at first, as one might expect the material to expand and close up the hole. However, it's important to remember that the expansion is uniform in all directions. Each segment of the ring, no matter where it is located, moves outward from the center of the ring as it expands, thus increasing the diameter of the hole.
- Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water for a short time will often make it easier to open. Why?

Conceptual Questions:

- If you heat a thin circular ring in the oven, does the ring's hole get larger or smaller?
youtube demonstration: <https://www.youtube.com/watch?v=nA-WJyq19H8>
 - When the ring is heated uniformly, all parts of it, including both the material of the ring and the space of the hole, expand. Since the material is expanding in all directions, the metal around the hole also expands outward, making the hole larger.
 - It might seem counterintuitive at first, as one might expect the material to expand and close up the hole. However, it's important to remember that the expansion is uniform in all directions. Each segment of the ring, no matter where it is located, moves outward from the center of the ring as it expands, thus increasing the diameter of the hole.
- Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water for a short time will often make it easier to open. Why?
 - Because the metal has a higher expansion coefficient than the glass, thus, it expands more than the glass at higher $T \rightarrow$ easier to open

Recap... Chapter 1+2, Thermal expansion

- Would the linear expansion coefficient change if we used millimeters or feet instead of meters?
- What is meant with the anomalous behaviour of water?
- What is thermal stress and how can it be computed?

Recap... Chapter 1+2, Thermal expansion

- Would the linear expansion coefficient change if we used millimeters or feet instead of meters?
 - The linear expansion coefficient of a material, expressed in terms of temperature change, is an intrinsic property of the material and does not depend on the unit of length measurement used.
- What is meant with the anomalous behaviour of water?
- What is thermal stress and how can it be computed?

Recap... Chapter 1+2, Thermal expansion

- Would the linear expansion coefficient change if we used millimeters or feet instead of meters?
 - The linear expansion coefficient of a material, expressed in terms of temperature change, is an intrinsic property of the material and does not depend on the unit of length measurement used.
- What is meant with the anomalous behaviour of water?
 - Most materials: volume increases (density decreases) with increasing T
 - Instead, water behaves unusual because, its volume in the range of from 0 to 4 $^{\circ}\text{C}$ actually decreases (and its density increases) as T increases (ice is “lighter” than water)
- What is thermal stress and how can it be computed?

Recap... Chapter 1+2, Thermal expansion

- Would the linear expansion coefficient change if we used millimeters or feet instead of meters?
 - The linear expansion coefficient of a material, expressed in terms of temperature change, is an intrinsic property of the material and does not depend on the unit of length measurement used.
- What is meant with the anomalous behaviour of water?
 - Most materials: volume increases (density decreases) with increasing T
 - Instead, water behaves unusual because, its volume in the range of from 0 to 4 $^{\circ}\text{C}$ actually decreases (and its density increases) as T increases (ice is “lighter” than water)
- What is thermal stress and how can it be computed?
 - Because of thermal expansion, thermal stresses can occur if materials are rigidly fixed and T changes. The required compression to keep an object at its original length can be computed via Young's modulus E , $\Delta l = 1/E P l_0$