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9 Thermal Machines

9.1 Thermal/Heat Engines

Note of caution: signs of Q can be a bit confusing in this section 9.1 of the original lecture
script, better follow the approach on the lecture slides.

A heat engine takes heat, Q1 > 0, from a reservoir with temperature T1, and coverts it to
work. The fact that the work, W , done by change the state of the system, depends on the
path it takes, it is used to extract the work. In order to extract work continuously, the path
has to come back to the original state making a cycle. Since the state of the heat engine
comes back to the original one, the entropy of the heat engine remains unchanged after the
cycle (if we consider reversible processes). On the other hand, the Entropy change of the
heat reservoir after one cycle is given by

∆S1 = −Q1

T
< 0 (1)

and the total entropy change is given by

∆Stotal = ∆S1 = −Q1

T
< 0 (2)

which does not agree with the second law of thermodynamic, stating that ∆Stotal ≥ 0 for
an isolated system. In order to fulfil the second law, we need to introduce another heat
reservoir with a temperature T2, where T2 < T1 and the engine ejects heat, Q2 < 0, to the
second reservoir. The entropy change of the second reservoir is then

∆S2 = −Q2

T
> 0 (3)

Figure 1: Schematic sketch of a heat engine.
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In this case, the first law gives, ∆Eint = Q1 +Q2 −W = 0, i.e.

Q2 = −Q1 +W (4)

and the total entropy change is given by

∆Stotal = ∆S1 + ∆S2 = −Q1

T1
− Q2

T2
(5)

From the second law, we have

∆Stotal = −Q1

T1
− Q2

T2
≥ 0 (6)

leads to
Q2

T2
≤ −Q1

T1
, i.e.

Q2

Q1
≤ −T2

T1
(7)

The efficiency of the heat engine is given by

ε =
W

Q1
=
Q1 +Q2

Q1
= 1 +

Q2

Q1
≤ 1− T2

T1
(8)

While a perfect engine has ε = 1, a real engine has an efficiency less than 1, i.e.

ε ≤ 1− T2
T1

< 1 (9)

9.2 Carnot Cycle

To demonstrate the result on the efficiency above, the Carnot cycle, a combination of isother-
mal and adiabatic processes, was invented, see Fig. 2. There is no real engine using the
Carnot cycle, but it can be used to demonstrate the second law of thermodynamic, with
four states, A, B, C, and D:

Figure 2: Carnot cycle in PV diagram

• A(Va, Pa, T1): A cylinder with an ideal gas is attached to a heat reservoir with a
temperature T1.
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• A → B: Isothermal expansion with a constant temperature T1, heat Q1 > 0 into the
cylinder from the reservoir, and work Wab > 0 being done.

• B(Vb, Pb, T1): The cylinder is removed from the heat reservoir and thermally isolated.

• B → C: Adiabatic expansion (Q = 0) till the temperature drops to T2 and work done,
Wbc

• C(Vc, Pc, T2): The cylinder is attached to another heat reservoir with a temperature
T2.

• C → D: Isothermal compression with a constant temperature T2, heat Q2 < 0 out of
the cylinder to the reservoir, and work Wcd < 0 being done.

• D(Vd, Pd, T2): The cylinder is removed from the heat reservoir and thermally isolated.

• DA: Adiabatic compression (Q = 0) till the temperature raise to T1 and work, Wda < 0,
done from the outside.

As done previously for the isothermal process, we have

Wab =

∫ Vb

Va

PdV = nRT1

∫ Vb

Va

dV

V
= nRT1 ln

Vb
Va

(10)

and for ideal gas ∆Eint = 0, leading to ∆Eint = Q−W = 0, and thus, to

Q1 = Wab = nRT1 ln
Vb
Va

> 0 (11)

Equally,

Q2 = Wcd = nRT2 ln
Vd
Vc

< 0 (12)

In the adiabatic expansion, we have PV γ = PbV
γ
b , thus the work between B → C is given

by

Wbc =

∫ Vc

Vb

PdV = PbV
γ
b

∫ Vc

Vb

V −γdV =
PbV

γ
b

1− γ
V 1−γ

∣∣∣Vc

Vb

=
PbV

γ
b

1− γ
(V 1−γ
c − V 1−γ

b )

=
PbVb
1− γ

[(
Vc
Vb

)1−γ

− 1

] (13)

Equally for the adiabatic compression, the work for D → A is given by

Wda =

∫ Va

Vd

PdV = PaV
γ
a

∫ Va

Vd

V −γdV =
PaV

γ
a

1− γ
V 1−γ

∣∣∣Va

Vd

=
PaV

γ
a

1− γ
(V 1−γ
a − V 1−γ

d )

=
PaVa
1− γ

[(
1− Vd

Va

)1−γ
] (14)

For the isothermal processes, we have PaVa = PbVb and PcVc = PdVd. And for the adiabatic
processes it follows that PbV

γ
b = PcV

γ
c and PaV

γ
a = PdV

γ
d .
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Furthermore, the ideal gas law gives

PaVa
T1

=
PbVb
T1

=
PcVc
T2

=
PdVd
T2

(15)

It follows that
PbV

γ
b = PcV

γ
c

PbV
γ
b

T1
PbVb

= PcV
γ
c

T2
PcVc

V γ−1
b T1 = V γ−1

c T2

T1
T2

=

(
Vc
Vb

)γ−1

(16)

and
PaV

γ
a = PdV

γ
d

PaV
γ
a

T1
PaVa

= PdV
γ
d

T2
PdVd

V γ−1
a T1 = V γ−1

d T2

T1
T2

=

(
Vd
Va

)γ−1

(17)

giving

Wbc +Wda =
PbVb
1− γ

[(
Vc
Vb

)1−γ

− 1

]
+
PaVa
1− γ

[(
1− Vd

Va

)1−γ
]

PaVa
1− γ

[
T1
T2
− 1 + 1− T1

T2

]
= 0

(18)

i.e. the adiabatic parts of works cancel each other.

This conclusion can be reached in a much simpler way. As indicated before, ∆Eint =
nCV ∆T and for an adiabatic process, Q = 0 leads to ∆Eint = −W . It follows that

Wbc = −∆Ebcint = −nCV (T2 − T1) and Wda = −∆Edaint = −nCV (T1 − T2) (19)

which leads to
Wbc +Wda = 0 (20)

The total work is now given by

W = Wab +Wcd = nRT1 ln
Vb
Va

+ nRT2 ln
Vd
Vc

= nRT1 ln
Vb
Va
− nRT2 ln

Vc
Vd

(21)

Note that the first law of thermodynamic is valid and W = Q1 +Q2. Using

T1
T2

=

(
Vc
Vb

)γ−1

=

(
Vd
Va

)γ−1

(22)

we obtain
Vc
Vb

=
Vd
Va
, i.e.

Vb
Va

=
Vc
Vd

(23)
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thus,

W = Wab +Wcd = nR(T1 − T2) ln
Vb
Va

(24)

and the efficiency is given by

ε =
W

Q1
=
nR(T1 − T2) ln Vb

Va

nRT1 ln Vb

Va

= 1− T2
T1

(25)

i.e the Carnot cycle gives the maximum efficiency allowed by the second law of thermody-
namic.

Carnot cycle and T-S plot

In the previous section, the Carnot cycle was drawn on the pressure (P) versus volume (V)
plane. From the relation, δW = PdV , valid for a reversible process, the area surrounded by
the Carnot cycle, A → B → C → D, on the P-V plane gives the total work of the Carnot
engine. By recalling the expression, δQ = TdS, for a reversible process, let us draw the
Carnot cycle on the temperature (T) versus entropy (S) plane. On this plane, an isothermal
process, T constant, is a horizontal line and an adiabatic process, Q = 0, thus S constant,
is a vertical line. Therefore, a Carnot cycle is a rectangular box on the T-S plane as shown
in Fig. 3. Similar for the work, the area surrounded by A→ B → C → D on the T-S plane
give the total heat of the Carnot engine.

Figure 3: Carnot cycle in the PV and TS diagrams.

As introduced in Chapter 6, the infinitesimal change in the internal energy can be given
from the first law of thermodynamics as

dEint = TdS − PdV (26)

By recalling that the internal energy depends only on the temperature, i.e.

dEint =

(
∂Eint
∂T

)
dT = nCV dT (27)
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it follows that

dS =
dEint
T

+
P

T
dV = nCV

dT

T
+ nR

dV

V
(28)

For a change of state from (P1, V1, T1) to (P2, V2, T2), the change of the entropy, ∆S, is
given by the integration as

∆S = nCV

∫ T2

T1

dT

T
+ nR

∫ V2

V1

dV

V
= nCV ln

T2
T1

+ nR ln
V2
V1

(29)

The entropy change for the isothermal expansion A→ B, ∆S, is given by

∆S = nR ln
Vb
Va

(30)

thus the area of the rectangular box is given by

Qtotal = ∆S(T1 − T2) = nR(T1 − T2) ln
Vb
Va

(31)

in agreement with the analysis before without using the entropy.

9.3 Refrigerators and air conditioning

The operation principle of refrigerators and air conditioners are the reverse of a heat engine,
transferring heat from a cool environment to a warm environment by work (shown in Fig.
4). In order to demonstrate how a refrigerator works, we operate the Carnot cycle in the
reversed order: A → D → C → B → A. In this case, the upper and lower limits for the
integration in the heat and work calculations must be exchanged. Thus, the sign of the
heat and work need to be flipped (again, considering reversible processes). The efficiency
or coefficient of performance (COP) of a refrigerator is defined as

εrefrigerator =
|Thermal energy extracted from the heat reservoir with T = T2|

|Total work given to the refrigerator|
(32)

From the Carnot engine calculations, heats for A → D and B → A, Qdc and Qba, respec-
tively are given by

Qdc = nRT2 ln
Vc
Vd

> 0 and Qba = nRT1 ln
Va
Vb

< 0 (33)

and similarly for the work, A→ D, D → C, C → B, and B → A

Wad =
PbVb
1− γ

[(
Vc
Vb

)1−γ

− 1

]

Wdc = nRT2 ln
Vc
Vd

Wcb =
PbVb
1− γ

[(
1− Vc

Vb

)1−γ
]

Wba = nRT1 ln
Vd
Vc

(34)
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Figure 4: Schematic sketch of a refrigerator.

The total work is given by

Wtotal = Wad +Wdc +Wcb +Wba = nR(T2 − T1) ln
Vc
Vd

(35)

The thermal energy extracted from the heat reservoir with T = T2 is given by Qdc, and the
work given to the refrigerator is −Wtotal. Thus the efficiency is then given by

εrefrigerator =
|Qdc|
|Wtotal|

=
nRT2 ln Vc

Vd

nR(T1 − T2) ln Vc

Vd

=
T2

T1 − T2
(36)

Note: ε of refrigerators, air conditioners, also heat pumps is typically called ”Coefficient of
Performance”, and can be larger than 1 (the term efficiency might be misleading).

9.4 Heat Pumps

Also heat pumps work as reversed heat/Carnot engines; as shown in Fig. 5, in contrast to
refrigerators, we consider here the heat Q1 put into the hotter reservoir T1 when computing
the efficiency of a heat pump:

εheat pump =
|Thermal heat put into hot heat reservoir T = T1|

|Total work given to the heat pump|
=

T1
T1 − T2

(37)
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Figure 5: Schematic sketch of a heat Pump.

9.5 On the impossibility of perpetual motion machines

Is it possible to build a perpetual motion with two Carnot engines?

The first low of thermodynamics does not allow drawing work from nothing. The second
law of thermodynamics does not allow to covert 100% of heat to work. Now we consider
two Carnot engines where the first one works in a normal way producing a positive work,
W , to the outside. Those work is then fed to the second Carnot engine operates in the
reverse direction (see visualisation in Fig. 6). The thermal energy transferred from the
high temperature heat reservoir to the low temperature by the first engine is restored by
the second one. Thus, the two engines seem to work forever. This third kind of perpetual
motion is not allowed by the energy losses such as the frictions and heat losses of a real
machine (as thermal processes are never fully reversible in reality).

9.6 Examples for heat engines

9.6.1 Stirling Engine

The thermal cycle of a Stirling consists of the following four steps: 1) isothermal expansion,
2) isovolumetric heat exhaustion, 3) isothermal compression, 4) isovolumetric heat absorp-
tion as shown in Fig. 7.

Questions: What is the heat and work of each subprocess? What is the efficiency? How
does this process look like in the TS diagram?
⇒ see lecture slides.

Fig. 8 further visualises how a real Stirling engine works.
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Figure 6: Schematic sketch of a hypothetic perpetual motion machine.

Figure 7: Thermal cycle of a Sterling Engine.

9.6.2 Otto Cycle

Many cars are built around an Otto engine, whose cycle is composed of two adiabatic and
two isochoric processes (shown in Fig. 9):

• 1→ 2: adiabatic compression of air-gasoline mix

• 2→ 3: isochoric heating

• 3→ 4: adiabatic expansion

• 4→ 1: isochoric cooling (gas exhaust)

9.6.3 Diesel Engine Cycle

Lastly, also a Diesel engine is still used in some cars/trucks. A Diesel cycle is composed
of adiabatic compression (1→2), isobaric decompression (2→3), adiabatic decompression
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(3→4), and isochoric compression (4→1) as shown in Fig. 10.
Note that isentropic means a reversible adiabatic process (with dS = 0).
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Figure 8: Visualisation of the Sterling engine cycle processes.

11



Figure 9: Otto cycle in the PV diagram.

Figure 10: Diesel engine cycle.
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