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7 The First Law of Thermodynamics and Thermal Pro-
cesses

7.1 The First Law of Thermodynamics

Thermodynamical State
A thermodynamic state is described by a set of state variables. Examples of state variables
are, P, V, T, number of moles, Eint etc. They are uniquely defined, independent of how the
system arrived at that particular state. As seen later, heat or work are not state variables
since they depend on how the system reached a particular state. Once a sufficient number of
variables have been specified, all other variables can be uniquely determined. The number
of variables needed to specify the system depends on the system.

Example: System of an ideal gas
The gas law for ideal gas PV = NkT shows that a set of three variables out of four, i.e. P,
V, T, and N determines the thermodynamic system.

The First Law of Thermodynamics
Extending the concept of energy conservation to a thermodynamical system, in a closed
system, we have

∆Eint = Q−W (1)

∆Eint: Change of the internal energy, Q: heat into the system, W : work done by the system.

In an isolated system, no energy transfer can occur, i.e. Q = 0 and W = 0, hence ∆Eint = 0.

Example: 2500 J of heat is added to a closed system and 1800 J of work is done ON the
system. What is the change of internal energy?

→ First Law : ∆Eint = 2500J − (−1800J) = 4300J (2)

Be careful with the signs here, both head and work are added to the system.
What would be the result, if 1800 J of work were done BY the system?

∆Eint = 2500J − 1800J = 700J (3)

7.2 Thermal Processes

In Thermodynamics, we have the following four thermal processes for gas to change its state:

• Isothermal (∆T = 0): while the state changes, the temperature is kept constant.

• Adiabatic (Q = 0): process with no heat exchange, i.e. thermally isolated system or
a very fast process.

• Isobaric (∆P = 0): while the state changes, the pressure is kept constant.

• Isovolumetric/Isochoric (∆V = 0): while the state changes, the volume is kept con-
stant.

Below we go through these different processes assuming a closed system and assuming for
simplicity, ideal gas.
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7.2.1 Isochoric processes (∆V = 0 →W = 0) and Isobaric processes (∆P = 0)

Change of internal energy for ideal gas
For isovolumetric process, we have ∆V = 0, thus

∆Eint = QV = nCV ∆T (4)

and for isobaric process
∆Eint = nCP∆T − P∆V (5)

For ideal gas, we have CP − CV = R and ∆V = nR∆T/P , thus

∆Eint = n(CV +R)∆T − nR∆T = nCV ∆T (6)

i.e. the change of internal energy for a temperature change of ∆T is given by

∆Eint = nCV ∆T (7)

for both isovolumetric and isobaric processes.

For ideal gas, any change from one to another thermal state can be seen as combinations
of isovolumetric and isobaric processes; this implies that the change of internal energy for a
temperature change of ∆T for any processes is given by

∆Eint = nCV ∆T (8)

7.2.2 Isothermal processes (∆T = 0→ ∆Eint = 0)

Let us consider two states A: (Va, Pa, T0) to B: (Vb, Pb, T0) of the same gas, where Va < Vb.
Since the temperatures are the same, the internal energy at A and B are the same, i.e.

∆Eint = Eint,b − Eint,a = 0 (9)

From the first law of thermodynamic

∆Eint = Q−W (10)

it follows that
Q = Wa→b (11)

i.e. if work is done, there must be heat.

We now determine the work for two different paths: 1) A→ B and 2) A→ D → B:

1) Work done for the isothermal expansion of an ideal gas from A to B at the temperature.
From the ideal gas law,

P =
nRT0

V
(12)

the work is given by

W1:a→b =

∫ Vb

Va

PdV =

∫ Vb

Va

nRT0

V
dV = nRT0

∫ Vb

Va

= nRT0 lnV
∣∣∣Vb

Va

= nRT0 ln
Vb
Va

> 0 (13)
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Note that from the ideal gas law, Pa > Pb and W corresponds to the area under the P (V )
line in the figure above.

2) Work done for the isovolumetric process from P = Pa to P = Pb, with constant volume
to the state D:(Va, Pb), followed by the isobaric process with a constant P = Pb from V = Va
to V = Vb. For the isovolumetric part, we have

Wa→d =

∫ Vb

Va

PdV = 0 (14)

i.e. no work is done.

Note that at D:(Va, Pb), the temperature has to change. This can be seen by comparing the
equation of the state at a, and d,

T0 =
PaVa
nR

, Td =
PbVa
nR

(15)

and

Td − T0 =
Va
nR

(Pb − Pa) < 0 (16)

i.e. the temperature drops. In the second process, P = Pb and the work is given by

Wd→b =

∫ Vb

Va

PbdV = Pb

∫ Vb

Va

dV = PbV
∣∣∣Vb

Va

= Pb(Vb − Va) > 0 (17)

In this process, the temperature has to increases from Td to T0. The total work done is

W2:a→b = Wa→d +Wd→b = Pb(Vb − Va) (18)
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With the ideal gas law,

Pb =
nRT0

Vb
(19)

it follows that

W2:a→b = Pb(Vb − Va) = nRT0(1− Va
Vb

) (20)

Note that
W1:a→b 6= W2:a→b (21)

i.e. the work done depends on the path of the process. In both cases, the work is
positive hence there must be the heat into the gas. Since Q = W , the heat Q also depends
on the process.

7.2.3 Adiabatic processes (Q = 0, no heat exchange with environment)

As mentioned, for a defined gas, among three state variables, T, V and P, there are only
two independent variables. Let us use T and V, leading to

∆Eint =

(
∂Eint
∂V

)
T

∆V +

(
∂Eint
∂T

)
V

∆T (22)

for a very small change of the state, i.e. |∆VV | � 1 and |∆PP | � 1 , and also

W =

∫ Vi+∆V

Vi

P (V )dV ≈ P (Vi)

∫ Vi+∆V

Vi

dV = P (Vi)∆V (23)

The first law of thermodynamics gives

∆Eint = Q−W = Q− P∆V (24)

By combining the two equations, we obtain

Q = P∆V +

(
∂Eint
∂V

)
T

∆V +

(
∂Eint
∂T

)
V

∆T (25)

For ideal gas, recalling that the internal energy depends only on temperature, i.e.
(
∂Eint

∂V

)
T

=
0 and the definition of CV , it follows that

Q = P∆V + nCV ∆T (26)

In an adiabatic process, no heat exchange is allowed. This can happen when the system
is thermally well isolated or the process happens very fast. Let us consider a very slow
(quasistatic) process where the state of ideal gas is adiabatically changed from A:(Va, Pa, T0)
to C:(Vb, Pc, T0), i.e. C has the same volume as B. Since there is no heat involved in the
process, Q = 0, we have:

P∆V + nCV ∆T = 0 (27)

Using PV = nRT for the ideal gas, we obtain

∆V

V
+
CV
R

∆T

T
= 0 (28)
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and furthermore,

∆T =
P∆V + V∆P

nR
and T =

PV

nR
(29)

lead to
∆V

V
+
CV
R

(
∆V

V
+

∆P

P

)
= 0. (30)

It follows that

(R+ CV )
∆V

V
+ CV

∆P

P
= CP

∆V

V
+ CV

∆P

P
= 0 (31)

i.e.

γ
∆V

V
+

∆P

P
= 0 (32)

where, γ = CP /CV . By replacing ∆V and ∆P by dV and dP , respectively, integration
gives

γ lnV + lnP = lnV γ + lnP = ln(V γP ) = constant (33)

leading to
V γP = constant (34)

Conceptual example: Imagine, we have a system of gas expanding at an initial volume
VA with the same Pressure PA to a final volume VB . Is more work done via isothermal
(T=const) or adiabatic expansion (Q=0)?

• Isothermes: P ∼ 1/V , Adiabates: P ∼ 1/V γ

• Average pressure is higher for isothermal process than for adiabatic process → PV
work higher

• Area under each curve represents the work W =
∫ VB

VA
PdV : area for isothermal curve

is larger than for adiabatic process
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Example for adiabatic processes: Air expands adiabatically from P1 = 2atm and V1 =
2l at 20 ◦C to V2 = 4l. What is the final pressure, the final temperature and the work done
by the gas? Note: γair = 1.4

For the solution, see the slides...

6


