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6 Energy, Heat, and Work

6.1 Energy and heat in thermodynamics

Energy
A unit of energy, related to thermal energy:
1 calorie (cal) = energy needed to increase the temperature of 1 g of water by 1 Celsius
degree
1 cal = 4.186 J = 4.186 Nm

Temperature T in Kelvin: a measure of the average kinetic energy of individual molecules.

Internal Energy Eint: total energy contained by a thermodynamic system

Eint = thermal energy + potential energy (1)

Thermal energy is kinetic energy due to translation, rotation and vibration, directly linked
to the temperature.

Internal energy of an ideal gas: no potential energy, i.e. internal energy is equal to the
thermal energy. Thermal energy is only due to translational kinetic energy of all the gas
molecules.

Eint = Ekin = N
m〈v2〉

2
=

3

2
NkT =

3

2
nRT (2)

where N is the number of molecules and n number of moles of the gas.

Flow of energy: Heat and work
Work (W): flow of energy out from the system in mechanics not related to temperature.
Heat (Q): flow of energy into the system due to the difference in temperature.
They can be transferred from one system to another. They do not define the state of a
system, i.e. they are not state variables.

Open, Closed and Isolated System
Closed system: can exchange energy but not matter with the surroundings.
Isolated system: can exchange neither energy nor matter with the surroundings.
Open system: can exchange both energy and matter with surroundings.

Work
When the volume of a thermodynamic system changes, work is done. Consider a cylindrical
container with a movable piston, which is filled with gas, not experiencing friction with the
wall. If we change the volume in a quasi-statical way, at any instance of the state change,
the gas is in an equilibrium state, i.e. T and P are uniform in the gas. The gas pressure
pushes the piston generating a force, F = PA where A is the area of the piston. The work,
done to move the piston by an infinitesimal amount dl, is given by

dW = Fdl = PAdl = PdV (3)

where dV = Adl is the infinitesimal change of the volume. Note that when the piston is
pushed up, work is done by the gas. When the volume changes from Va to Vb, the work
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done is given by

W =

∫ Vb

Va

PdV (4)

6.2 Heat capacity and calorimetry

We distinguish between sensible and latent heat. The latter is described in section 6.4, while
here we focus on sensible heat. For sensible heat, heat going into the system, Q, changes
the temperature of the system by ∆T :

Q = mc∆T (5)

where m is the mass of the material in the system and c is a quantity characteristic to the
material called ”specific heat”. The unit of c is given by J

kg.C◦ or kcal
kg.C◦ . From the definition

of the calorie, c for the water at 15◦C and a constant pressure of 1 atm is 1 kcal
kg ◦C◦ .

Example:
We consider a system of an iron container of 20 kg, containing 20 kg of water. The specific
heat for iron is 0.11 kcal

kg.C◦ . Now we calculate the heat needed to increase the temperature of
the system from 10◦C to 90◦C.

For iron we have

Qiron = mciron∆T = 20kg · 0.01kcal · (kg ◦C)−1 · (90− 10)◦C = 176kcal (6)

and for water

Qwater = mcwater∆T = 20kg · 0.01kcal · (kg ◦C)−1 · (90− 10)◦C = 1600kcal (7)

The total heat required is thus

Qtotal = Qiron +Qwater = 1776kcal (8)
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When the system cools down from 90C◦ to 10C◦, the heat going out from the system is
1776kcal. Note that water is a good heat reservoir being a material with one of the highest
value of c.

Why is the heat capacity so important? It connects two quantities which are easy to mea-
sure: Temperature change and heat added to the system (calorimetry).

So far, the specific heat, c, for solid and liquid is given by:

Q = mc∆T (9)

where the heat Q is in cal, m is the mass in g and ∆T the temperature difference in degree
Celsius.

For gas, two more variables, volume (V ) and pressure (P ), need to be considered. Therefore,
two kinds of specific heats are introduced:

• cv: specific heat at constant volume

• cp: specific heat at constant pressure.

and they are fairly different as shown in Table 1 for different molecules.

Different Specific Heat cv cp CV CP CP − CV γ = CP /CV

Monatomic

He 0.75 1.15 2.98 4.97 1.99 1.67

Ne 0.15 0.25 2.98 4.97 1.99 1.67

Diatomic

N2 0.177 0.248 4.96 6.95 1.99 1.40

O2 0.155 0.218 5.03 7.03 2.00 1.40

Triatomic

CO2 0.153 0.199 6.80 8.83 2.03 1.30

H2O 0.350 0.482 6.20 8.20 2.00 1.32

Table 1: Specific heats and molar specific heats of various substances.

Similarly, we can have those specific heats for NA gas molecules, where

NA = 6.02× 1023 (10)

NA is the Avogadro number. Related CV and CP are called molar Specific Heats. The heat
needed to raise the temperature of n moles of gas, i.e. with n × NA molecules, by ∆T in
◦C is given by

QV = nCV ∆T at constant volume

QP = nCP∆T at constant pressure
(11)
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For a gas with r u molecular mass, the mass of 1 mole of the gas is then r g. Therefore,

CV = r cv

CP = r cp
(12)

By noting that the atomic mass of the He, Ne, N2 etc. are given by ∼ 4 u, ∼20 u, ∼28 u,
etc., respectively, Table 1 shows that this relation is indeed valid.
Let’s now heat ideal gas very slowly at

1. constant volume V, or

2. constant pressure P,

to change the temperature from T to T + ∆T .

For case 1., ∆V = 0, i.e. no work is done, i.e. from ∆Eint = Q−W , it follows that

∆Eint = QV = nCV ∆T (13)

This implies that all the thermal energy going into the system is used to change the internal
energy. For an infinitesimally small changes, we have

CV =
1

n

(
∆Eint

∆T

)
V=constant

≡ 1

n

(
∂Eint
∂T

)
V

(14)

The process 2. requires
∆Eint = QP −W (15)

where the work W = P∆V , since ∆V 6= 0 and P is constant. Noting that ∆Eint is identical
for the two processes, and given the same change in the temperature, ∆T , it follows that
QV = QP −W , i.e.

QP −QV = W = P∆V (16)

where the work is in the isobaric process, i.e. P is constant.

For an ideal gas, PV = nRT , with a constant pressure we obtain

∆V =
nR∆T

P
(17)

leading to

QP −QV = P
nR∆T

P
= nR∆T (18)

Combined with QP = nCP∆T and QV = nCV ∆T , it follows that

CP − CV = R (19)

i.e. CP > CV , more heat is needed at constant pressure (than at constant volume) to raise
the temperature by the same amount to compensate the work done at the same time.
Also note that the gas constant is given by

R = 8.314
J

mol K
= 1.99

cal

mol K
(20)

which is close to the values measured experimentally for various gasses.
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6.3 Heat capacity for non-ideal gas and equipartition theorem

For ideal gas we assume atoms/molecules with only translational kinetic energy, but no
angular momentum, no vibrational degrees of freedom. In this section, we consider these
additional degrees of freedom for the kinetic energy Ekin.

Equipartition of Energy
In the kinetic theory of point-like ideal gas, discussed in Chapters 4 and 5, we obtained

PV = Nm〈v2x〉 =
2

3
N

(
1

2
m〈v2〉

)
=

2

3
N〈K〉 (21)

where 〈K〉 is the average translational kinetic energy and N〈K〉 is equivalent to the internal
energy of the (ideal) gas. Together with the ideal gas law, PV = nRT , it follows that

Eint =
3nRT

2
(22)

In the process with a constant volume, W = 0 and

∆Eint = QV = nCV ∆T, (23)

it follows that

CV =
1

n

(
∆Eint

∆T

)
=

3

2
R (24)

Using the value ofR, we obtain CV = 2.98cal/(mol K), in a good agreement with monatomic
gasses.

But let’s now turn to higher-atomic gases with not only translational motions. We recall
the Boltzmann factor e−E/kT describing the distribution of the internal energy E for a
temperature T . Let us assume that the energy is a function of variable x in the form of
E = αx2 with a constant α. The average energy 〈E〉 is then given by

〈E〉 =

∫∞
−∞ αx2e−αx

2/kT dx∫∞
−∞ e−αx2/kT dx

=
kT

2
(25)

If we extend the energy to be

E =

nf∑
i=1

αix
2
i (26)

i.e. the energy is a sum of nf components, all having a same functional form, then the
average energy becomes

〈E〉 =

∫∞
−∞ dx1 · · ·

∫∞
−∞ dxnf

∑nf

i=1 αix
2
i e
−

∑
j αjx

2
j/kT∫∞

−∞ dx1 · · ·
∫∞
−∞ dxnf

e−
∑

j αjx2
j/kT

=

nf∑
i=1

∫∞
−∞ dx1 · · ·

∫∞
−∞ dxnf

αix
2
i e
−

∑
j αjx

2
j/kT∫∞

−∞ dx1 · · ·
∫∞
−∞ dxnf

e−
∑

j αjx2
j/kT

(27)
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Since all but one integral cancel between the numerator and denominator, we have

〈E〉 =

nf∑
i=1

∫∞
−∞ dxiαix

2
i e
−αix

2
i /kT∫∞

−∞ dxie−αix2
i /kT

=
1

2
nfkT (28)

For a gas of N molecules, or n moles, it follows that

〈E〉 =
1

2
nfNkT, or 〈E〉 =

1

2
nfnRT (29)

respectively. It follows that

CV =
1

n

(
∆Eint

∆T

)
=

1

2
nfR (30)

A monoatomic gas has only translational degrees of freedom and the energy is given by

E =
1

2
m(v2x + v2y + v2z) (31)

i.e. nf = 3. More complex molecules have rotational and/or vibrational kinetic energy, in
addition to the translational kinetic energy.

For example, diatomic or three-atomic molecules, if only considering rotational energy, have
5 or 6 degrees of freedom, i.e. nf = 5 and 6, respectively:

E =
m

2

(
v2x + v2y + v2z

)
+
L2
1

2I1
+
L2
2

2I2
and E =

m

2

(
v2x + v2y + v2z

)
+
L2
1

2I1
+
L2
2

2I2
+
L2
3

2I3
(32)
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where L’s are the angular momenta and I’s corresponding moments. The energy of diatomic
gas with additional vibrational motions is given by

E =
1

2
(v2x + v2y + v2z) +

L2
1

2I1
+
L2
2

2I2
+
µ

2
(~̇r1 − ~̇r2)2 +

k

2
(~r1 − ~r2)2 (33)

where µ is the reduced mass of the two atoms and k is the spring constant, i.e. nf = 7.

Here are some considerations:

• Monatomic molecule: 3-translational kinetic energies, nf = 3

• Diatomic molecule: plus 2-rotational kinetic energies, nf = 5

• Diatomic molecule: plus 1-vibrational kinetic and 1-vibrational potential energies,
nf = 7

With this derivation, we showed that (i) the energy of a molecule is equally shared among
the active degrees of freedom and (ii) each degree of freedom carries on average kT/2 of the
energy. This is called the equipartition theorem.

Note that

3

2
R = 2.98cal/mol ·K, 5

2
R = 4.98cal/mol ·K 7

2
R = 6.97cal/mol ·K (34)

Measured values show that some of the degrees of freedom are not ”active”, and that the
degrees of freedom may decrease with decreasing temperature to nf = 5, then to nf = 3 for
different gas molecules, i.e. gases behave like monatomic molecules at very low temperatures.
These observations/measurements are related to the foundation of quantum theory.

6.4 Latent heat and phase transitions

Phases of matter and transitions between them
As discussed in Chapter 1, there are three phases of matter: solid, liquid and gas. The table
below summarises the transitions among these phases:

From/To Solid Liquid Gas

Solid - Melting Sublimation

Liquid Freezing - Vaporization

Gas Deposition Condensation -

Then, the Figure below is called ”phase diagram” (here shown for water), where the areas of
three phases are indicated as a function of pressure and temperature. When the solid black
lines are crossed by changing the pressure or/and temperature, there is a phase transition,
usually involving latent heat. At the triple point, all three phases exist simultaneously.
Above critical point, vapour can change to water or water to vapour smoothly without la-
tent heat.

7



Latent Heat
Latent heat is a form of heat that does not lead to a change in temperature. When the
phase of matter changes, e.g. from solid to liquid, or from liquid to gas, heat needs to be
added tot the system. However, the temperature of the system remains constant, i.e. all the
energy is used to transform the molecular structure and not to increase the kinetic energy
of the molecules:

• Specific latent heat of fusion (melting) LF : heat needed to change 1 kg of material
from the solid to liquid phase.

• Specific latent heat of vaporization (boiling) LV : heat needed to change 1 kg of ma-
terial from the liquid to gas phase.

The total heat needed, Q, to melt m kg of material is then

Q = mLF (35)

On the other hand, in order to solidify m kg of liquid, Q = mLF , must be taken out from
the system at the melting temperature.

Example:
Let’s consider a block of ice of 0.5 kg at −10◦C to be put into 3 kg of water at 20◦C. The
specific heat of ice is 0.5kcal/(kg ◦C) and the specific heat of fusion, 79.7kcal/kg.
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For the ice to melt, first the temperature must raise to 0◦C requiring a (sensible) heat of

Qice = mcice∆T = 0.5kg · 0.5kcal(kg · C◦)−1(0 + 10)C◦ = 2.5kcal (36)

plus latent heat of

Qmelting = mLF = 0.5kg · 79.7kcal kg−1 = 39.85kcal. (37)

Thus the total heat needed is

Qtotal = Qice +Qmeelting = 42.35kcal (38)

which has to be taken from the 3 kg of water at 20◦C. This will cool down the temperature
of the water to Twater−3kg, which can be derived from

−Qtotal = mcwater∆T = 3kg · 1kcal(kg · C◦)−1(Twater−3kg − 20)C◦ = −42.35kcal (39)

leading to

Twater−3kg = − 42.35kcal

3kcal · C◦−1
+ 20C◦ = 5.88C◦ (40)

Now we are putting 3kg of water at 5.88◦C and 0.5 kg of water at 0◦C together. If we
denote the final temperature of 3.5 kg of water to be Twater−3.5kg, the heat needed for the
0.5 kg of water is

Q0.5kg = mcwater∆T = 0.5kg · 1kcal(kg ◦C)−1 (Twater−3.5kg − 0)◦C (41)

and heat of 3kg of water is

Q3kg = mcwater∆T = 3kg · 1kcal(kg ◦C)−1 (Twater−3.5kg − 5.88)◦C (42)

Since they are mixed each other,

Q0.5kg +Q3kg = 0 (43)

leading to
0.5kcal Twater−3.5kg + 3kcal Twater−3.5kg − 3kcal × 5.88 = 0 (44)

Thus, we obtain:

Twater−3.5kg =
3kcal × 5.88C◦

0.5kcal + 3kcal
= 5.04◦C (45)

i.e. the temperature of the water becomes 5.04◦C.

9



Evaporation and boiling
At the boiling point, liquid changes to gas everywhere leading to the formation of gas
bubbles in the liquid. On the other hand, the change from liquid to gas occurs at the
boundary surface between the two even below the boiling temperature, called evaporation:
molecules with higher kinetic energy escaping from the liquid phase to the gas phase. Thus,
the average kinetic energy of the molecules remaining in the liquid decreases, thus the
temperature of the liquid drops.
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