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8 Entropy and the second and third law of Thermody-
namics

8.1 Reversible and irreversible processes

Consider an isothermal expansion of an n-mol ideal gas at T" = T changing its state from
A(Vy, Py, To) to B(Vy, Py, Tp) through a quasi-static path (see Chapter 7, and top row of
the figure below). This process follows the line given by PV = nRT, on the V-P plane.
Since there is no temperature change, AF;,; = 0 and from the first law of thermodynamics
follows @ = W, where work W is given by
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Once the system is at the state B, we can make the system to follow the same path back to
A by applying —Qa_,p and , just reversing the sign. Any process that can be reversed by
changing the sign of Q and W is called reversible.

Now consider a process where a thermally isolated container with a volume V}, is divided
into two by a tight thermally isolating wall. One section is filled with an n-mol ideal gas
at A(V,, P,,Tp) and the other vacuum. Now we remove the wall and let the gas to expand
into the whole volume (see bottom row of figure below). Since the container is thermally
isolated, Q = 0, and since gas expands without moving anything, W = 0. The first law
of thermodynamics leads to AFE;,; = 0. The final state is B(V}, Py, Tp). Since the internal
energy depends only on temperature, no change of temperature in this process. The process
cannot be shown as a quasi-static path on the V-P plane. Clearly, this process cannot be
reversed by simply changing the sign of Q and W. Any process that cannot be reversed by
changing the sign of Q and W is called irreversible.
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8.2 Entropy

For a reversible process, the change of entropy of a thermodynamic system, AS, for a
change of its state from A to B with heat Q and at a constant temperature T, is given by
Q

AS =2 (3)

where the temperature is in Kelvin. If the temperature of the system is not constant, AS

is given by 5 5
AS = / ds = / Q (4)
A a T

where the integral follows a quasi-static path from A to B. Note that % of infinitesimally

small step on the path is given by %. It can be shown that AS is independent of the path,
unlike the heat. Thus, the entropy, S, is a state variable such as volume and temperature

and AS = S(B) — S(A).

We demonstrate the fact that AS does not depend on the path, by calculating AS explicitly
for a change of state A(V,, P,,To) to B(Vs, Py, Tp) for an n-mol ideal gas in two different
reversible paths. As shown above, the state from A to B can be achieved through isothermal
expansion, where heat is given by

Q =nRTln % (5)

a

Since the temperature does not change in the process, the entropy change is then given by
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As an alternative path, we consider reaching B in two steps, first decreasing the pressure
under constant volume to reach D(V,, Py, Ty), followed by increasing the volume under

constant pressure (see again Chapter 7). For the heat, we have:

A—D: Qad = nCVdT and D — B: de = TLdeT (7)
which leads to
Ta Td To TO
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The total entropy change is given by

T T
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Using the gas low, PV = nRT, we obtain,
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showing that the two different paths give same AS. Since V, < V;, we have AS > 0.

The considered paths can be indeed reversed, i.e. C — A, by changing the sign of Q and W,
with negative entropy AS. Therefore, entropy change for a loop such as A - B — C — A,

0Q _

ASab + ASpe + ASeq = ]{ T

0 (12)

i.e. it is always 0. We conclude that AS does not depend on the path, thus S is a state
variable.

For irreversible processes, it turns out
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For the state change of A(V,, P,,To) to B(Vy, Py, Ty) discussed above, indeed we have
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Therefore, we can write,
AS > / °Q (15)
42 T
where the equal sign holds only for reversible processes, i.e. entropy change is given by
B
0Q
AS = — 16
| % (16)

only for the reversible process. If we consider a thermally isolated system, there is no heat
exchange for any process, i.e. AS > 0.

Important, clarifying remarks to original lecture notes (consider slides for more details):

e So far, we have considered the change of entropy due to heat exchange with the

environment: dSep, = JTQ

e The total entropy change of a thermodynamic system is dSsystem = dSens + dSprod-

e With dS,0q being the entropy production due to dissipation within the system (not
always to compute that).

e For irreversible processes: dSp,oq > 0.

e For reversible processes, dSen, = %, but dSpr0a = 0 = dSsystem = dSenv = %.

o In general: dSsystem > dSenv, i-€. dSsystem > ‘%Q, with equality only for reversible
processes!!



8.3 The second law of thermodynamics

The second law of thermodynamics states: In any thermodynamic process, in which a
thermally isolated system goes from one state to another state, the entropy cannot be
decreased, i.e. dSsystem >= 0.

8.4 The third law of thermodynamics

The third law of thermodynamics states: The entropy of a system converges to a constant
value Sy = 0 for T'— 0 independent of all the other properties for the particular system.

But S converging against a constant is a rather weak statement, and valid for classical ther-
modynamics. Instead, in statistical thermodynamics : S converges against 0J/K for T'— 0.

The third law also requires that the specific heat Cp, Cy converges to 0 for T — 0 (because
dS =0Q/T =nCdT/T).
8.5 Entropy and the first law of thermodynamics

For reversible processes with a fixed temperature T, the heat Q can be obtained from the
change of the entropy, AS as or for an infinitesimally small path, 6QQ = T'dS. Then,
The first law of thermodynamics can be written as

dEint = 6Q — W =TdS — PdV (17)

where the terms of the right side consist of state variables, not depending on the path.
Therefore, it is valid even for irreversible process. One may summarise as:

e 0QQ =TdS — Only for reversible case
e )W = PdV — Only for reversible case
e dFE;,; = 0Q — 0W — always valid
e dFE;,; =TdS — PdV — always valid
For irreversible process, we have T'dS > §Q, thus PdV < §W.

The slides provide many examples of how to apply the first and second law to simple
homogenous, inhomogeneous and stationary thermodynamic systems. Consult the slides for
more details.

8.6 Statistical interpretation of Entropy
Once we obtain, dE;,; = TdS — PdV, temperature, T, can be given by

1 1 oS
i = (18)
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While deriving the Boltzmann constant in Chapter 5, we obtained the expression:
dIn Q(FE) 1
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where, k is the Boltzmann constant, and Q(E) is the number of states with energy E as an
thermal equilibrium condition. This leads to

= 2

By integrating the both sides, we get
S=FkInQ (21)

which is the definition of entropy in statistical physics: the entropy of a particular macrostate,
S, is given by the formula, S = kIn ), where ) is the number of microstates associated to
the particular macrostate. At T' = 0, there is only one state. The evolution of a thermo-
dynamic system is in the direction from an ”ordered” state to a more ”chaotic” state: e.g.
vacuum expansion (as the probability for a chaotic is higher than for a more ordered state).

8.6.1 Entropy of free expansion a la statistical mechanics

We will now compute the entropy change for the free expansion process. Let’s assume
we have a total of N ideal gas molecules placed in a container with volume V,. In that
volume, there are m possible states that the gas molecule can take. The number of possible
configuration taken by the IV molecules, €, is then given by

2= () = -

and entropy is thus, given by

m!
S—kan—klnN (23)

!(m;N)!

Since we are considering a macroscopic system, both m and N are large, where Inn! ~
nlnn — n (Sterling’s approximation) can be used. This leads to

m!
S=kIn N

mzk[mlnm—NlnN—(m—N)ln(m—N)] (24)



Since we are considering an ideal gas, the gas density must be very small, thus we have
m > N, and the following approximation holds:

m—N_Nlnm—N

mlnm — NInN — (m—N)In(m - N)=mln

N N N
~mn(l+—=)—Nln—(1+—) (25
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and therefore we obtain for S N
S~k(N—-NIln—) (26)
m

When the volume of the container is increased to Vj, the number of possible states in the
container also increases from m to xm, where x = % Then the entropy is given by

N
S ~k(N—-Nln— 27
(N- N2 (21)
and the entropy change is given by

AS=S5 —-S~kNhz (28)

Converting it to the mole number, n, and universal gas constant R, it follows that

Vi

AS ~nRIn 7" (29)

Note that this result is the same as the entropy change we obtained for a reversible isothermal
process. And in general, one can show that the entropy change of an irreversible process
can be approximated as if it was a reversible process under most similar conditions (here:
constant T).

8.6.2 Special Example: Entropy of mixing

A thermally isolated container with a volume V is split into two, V4 = 2V and Vo = (1—2)V
where 0 < z < 1, separated by a thermally isolated wall. They are filled with two different
ideal gasses of n; = xn-mol and ne = (1 — x)n-mole, respectively. Both gasses have the
same pressure, P, = P, = P, and the same temperature, 77 = T, = T. Now we remove the
wall, and gas-1 expands into volume-2 and gas-2 into volume-1 (see last figure of this section).

Since there is no temperature difference between the two regions, the temperature remains
constant in this process. The two gases do not perform any work either, since they have
nothing to move mechanically when they expand. Therefore, this process can be dealt as
two gases making a free expansion process independently. Then the entropy changes of the
two gases are given by

AS; =anRln % and AS; =(1—2z)nRIn ﬁ (30)
and the total entropy change can be expressed as
AS = AS1+ASy = znRIn %+(171’)an11 (1_‘;)‘/ = —nR[zlnz+(1—2z)In(1-x)] (31)
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AS for mixing in arbitrary unit

As seen from the figure above, where AS =0 at z = 0 and = 1, i.e. with one gas and no
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes
sense for two different ideal gases, since the mixing of two different gasses is an irreversible
process. However, if the two gasses are completely identical, i.e. gas molecules are indis-
tinguishable, no change occurs after removing the wall. The original state can be restored
by simply putting back the wall, thus AS must be = 0, which is not in agreement with the
result above. This depends on how to interpret ”distinguishable” and ”indistinguishable”
and their statistical treatment showing a limitation of classical thermodynamics description.
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