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10 Thermodynamic potentials and equilibria

10.1 Basic relations of Thermodynamics

Remember the first law of TD: dEint = δQ− δW and dEint = TdS−PdV are always valid,
but δQ = TdS and δW = PdV only for reversible processes. This is applicable to a special
case, a closed system only.

Instead, for an ”open system”, matter exchange with the environment can occur. Remember
from Chapter 6, the more general form of the first law is

dEint = dQ− dW + dC

with C being the chemical potential.

Matter transport and chemical potential:

dC =

N∑
i=1

µidni

with dni being the number of moles of substance i and µi is the chemical potential for the
substance i per mole. It describes the energy to add dni mole of substance i to the system
at dW = 0 and dQ = 0.

µi =

(
∂Eint

∂ni

)
S,V const

Every chemical reaction can be described by removing initial substances and adding final
ones, e.g., 2H2 +O2 → 2H2O or 2µ1 + 1µ2 → 2µ3. Most generally, it can be expressed as

k∑
i=1

µini →
p∑

j=k+1

µjnj

A flow of matter is caused by a difference in the chemical potential (from higher to lower
chemical potential). Instead, flow of work was caused by a difference in P/V, and a flow of
heat was caused by a difference in T.

At given T, P, and V a system with more moles (higher particle concentration) has a higher
chemical potential.

In most general form, we can write the first law of TD as the ”Gibbs’ fundamental
relation”:

dEint = TdS − PdV +
∑
i

µidni; i.e. Eint = Eint(S, V, n)

The derivative of the internal energy can also be written as:

Eint =
∂Eint

∂S
dS +

∂Eint

∂V
dV +

∑
i

∂Eint

∂ni
dni,

so that

T =
∂Eint

∂S
; P = −∂Eint

∂V
; µi =

∂Eint

∂ni
.
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The differential ”Gibbs” equation also exists as a simple algebraic ”Euler” relation (as the
derivation in lecture slides shows):

Eint = TS − PV +
∑
i

µini

Differentiating the Euler equation results in:

dEint = TdS + SdT − PdV − V dP +
∑

µidni +
∑

nidµi

With the Gibbs’ relation, we obtain:

SdT − V dP +
∑

nidµi = 0

This is known as the ”Gibbs-Duhem” relation.

10.2 Thermodynamic potentials and exact differentials

Physical meaning and motivation of TD potentials: TD potentials play the analogue
role as potentials in classical mechanics: Forces are derived from the Gradient of the Poten-
tial: ~F = ~∇U . For the U being the gravitational potential U = −GMm

r , it follows for the
gravitational force:

Fgrav =
∂U

∂r
=
GMm

r2

Forces in classical mechanics lead to movements of particles/objects.

Analogy in TD: Gradients/derivations of TD potentials result in state variables
(V, P, T, S, ...), whose change introduce a TD process (expansion, compression
etc.). Such a TD process continues until the TD system is in equilibrium (no change with
time without any influence from the outside) via reaching extrema (minima) of TD poten-
tials.

Eint is a thermodynamic potential; the definition of a thermodynamic potential follows the
mathematical concept of exact differentials:

f(x, y)→ df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy

Example: f(x, y) = 3xy then
(

∂f
∂x

)
y

= 3y;
(

∂f
∂y

)
x

= 3x

Now let’s define P =
(

∂f
∂x

)
y

and Q =
(

∂f
∂y

)
x
, then we have df = Pdx + Qdy. From that

follows that: (
∂P

∂y

)
x

=

(
∂Q

∂x

)
y

because of the Schwartz theorem, which needs to be fullfilled for an exact differential:

∂2f

∂x∂y
=

∂2f

∂y∂x
.
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In the above example, we would have
(

∂P
∂y

)
x

= 3 and
(
∂P
∂x

)
y

= 3. If a function fullfills

these conditions, it is called an exact differential. Exact differentials are used to describe a
quantity that can be integrated along any path between two points with the same result,
such as a state function. The internal energy, which is a state function, is an example for
an exact differential.

If we replace f(x, y) with dEint(S, V, n), we obtain:

dEint =

(
∂Eint

∂S

)
V,n

dS +

(
∂Eint

∂V

)
S,n

dV +

(∑ ∂Eint

∂ni

)
S,V

dni

with

T =

(
∂Eint

∂S

)
V,n

; P = −
(
∂Eint

∂V

)
S,n

and µi =

(
∂Eint

∂ni

)
S,V

Natural variables of a TD potential are that variables, which fully determine a TD po-
tential, and which allow us to derive dependent variables directly from derivatives of the
potential to the natural variables.

• Example: Eint : S, V, n are natural variables → T, P, µ can be derived.

• Counter example: T cannot be a natural variable of Eint because
(
∂Eint

∂T

)
V

= CV !

Applying then the mathematical concept of exact differentials, we can further derive these
so called ”Maxwell” relations (based on the Schwartz theorem):(

∂T

∂V

)
S,n

= −
(
∂P

∂S

)
V,n(

∂T

∂ni

)
V,S

=

(
∂µi

∂S

)
V,n

−
(
∂P

∂ni

)
V,S

=

(
∂µi

∂V

)
S,n

In addition to the internal energy Eint, other TD potentials can be introduced in order to
find other energy functions which have other sets of natural variables similarly simple as
Eint with S, V, n. This can be of advantage as the natural variables of Eint are not very
convenient to measure (e.g. entropy S) or to be held fixed. Thus, depending on the experi-
ment, other TD potentials can be used, where natural variables are more easily measurable
or be fixed (to make estimates on related equilibrium states).

Theoretically, we can transition from one TD potential and its natural variables to another
via a Legendre transformation:

Imagine we have a state function f(x) and y(x) is the derivative of f(x) to x, i.e. y(x) = df(x)
dx .

Then a Legendre transformation g(y) is defined as:

g(y) = f(x)− yx.

Meaning of the Legendre transform: It is a mathematical operation to transform one function
into another such that the information contained in the original function is preserved, but
is expresed via different (natural) variables.
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10.3 Enthalpy H

The thermodynamic potential Enthalpy H is defined as the Legendre transform of internal
energy Eint with respect to V (being the ”x” in the equations above): H = Eint + PV .
Differentiating H results in:

dH = TdS − PdV +
∑

µidni + PdV + V dP

= TdS + V dP +
∑

µidni

Thus, the natural variables of H are S, P, and n so that we can rewrite dH also as:

dH =

(
∂H

∂S

)
P,ni

dS +

(
∂H

∂P

)
V,ni

dP +
∑(

∂H

∂ni

)
S,P

dni

Thus:

T =

(
∂H

∂S

)
P,ni

; V =

(
∂H

∂P

)
V,ni

; µi =

(
∂H

∂ni

)
S,P

And as for Eint, we can again derive the Maxwell equations; one example is:(
∂T

∂P

)
S,n

=

(
∂V

∂S

)
P,n

Application: assume we have an isobaric, reversible process (P = const) in a closed system
(in equilibrium with work reservoir), then dH = TdS = dQ. In this example, the increase
of Enthalpy corresponds to the heat added to the system.

10.4 Free Energy F

Free Energy F is defined as the Legendre transform of the internal energy Eint with respect
to S: F = Eint − TS. Differentiating F leads to:

dF = TdS − PdV +
∑

µidni − TdS − SdT

= −SdT − PdV +
∑

µidni

Thus, the natural variables of F are T, V, and n, and we can re-write the expression for dF
as:

dF =

(
∂F

∂T

)
V,n

dT +

(
∂F

∂V

)
T,n

dV +
∑(

∂F

∂ni

)
T,V

dni

Thus,

−S =

(
∂F

∂T

)
V,ni

; V =

(
∂F

∂V

)
T,ni

; µi =

(
∂F

∂ni

)
T,V

And as for Eint and H, we can again derive the Maxwell equations; one example is:(
∂S

∂V

)
T,n

=

(
∂P

∂T

)
V,n

Application: Isothermal process (T = const) of a closed system: dF = −PdV = −dW ; An
increase of the free energy implies that work is done on this system (equal to the difference
in free energy).
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10.5 Gibbs Free Enthalpy G

The Free Enthalpy or the Gibbs Free Energy G is the Legendre transform of the internal
energy with respect to S and V, or of the Enthalpy with respect to S: G = Eint+PV −TS =
H − TS. Differentiating G leads to:

dG = TdS + V dP +
∑
i

µidni − TdS − SdT

= −SdT + V dP +
∑
i

µidni

Thus, the natural variables of G are T, P, and n. We can re-write the expression for dG as:

dG =

(
∂G

∂T

)
P,n

dT +

(
∂G

∂P

)
T,n

dP +
∑
i

(
∂G

∂ni

)
T,P

dni

with

−S =

(
∂G

∂T

)
P,n

; V =

(
∂G

∂P

)
T,n

; µi =
∑
i

(
∂G

∂ni

)
T,P

One example of the three Maxwell relations for G is:

−
(
∂S

∂P

)
T,n

=

(
∂V

∂T

)
P,n

Relevance of the Gibbs’ Potential G: Most chemical reactions happen at constant pressure
P and temperature T. Thus, the Gibbs’ Potential is the chemical potential, which can be
shown by using the Euler relation for Eint:

G = H − TS = Eint + PV − TS = TS − PV +
∑
i

µini + PV − TS

→ G =
∑
i

µini

[Note that G is formerly noted as C.]

10.6 Equilibra of subsystems coupled to a reservoir

In this section, we characterise how an isolated system, composed of two simple subsystems
coupled to a reservoir/thermal bath (in equilibrium with subsystems), approaches equilibria
states under different conditions (i.e. minimisation of thermodynamic potentials). These
systems have extensive state variables S = S1 +S2 and V = V1 +V2, where 1 and 2 refer to
the quantities of the subsystems 1 and 2 (remember that P and T are intensive quantities,
they are NOT additive). Equally, we can write to the thermodynamic potentials of the
systems:

Eint = Eint,1 + Eint,2

F = F1 + F2

H = H1 +H2
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G = G1 +G2

1. Minimum of Free Energy

Assume we have an isolated, rigid system two subsystems which are kept in thermal equi-
librium with a heat reservoir, i.e. T1 = T2 = Tres = T and Volume V = constant. The Free
Energy F of this system can be expressed as dF = dEint − TdS. With dEint = δQ − δW
and δW = 0 because of dV = 0, we obtain:

dF = δQ− TdS = δQ− TSprod − δQ = −TdSprod ≤ 0

since dS = dSprod + δQ/T . Equality to zero is achieved only for reversible processes as in
that case no entropy is produced within the system (dSprod = 0).

If a rigid system (V constant) is kept at constant temperature T (due to interactions with
the heat reservoir), the equilibrium between subsystems minimises the free energy of the
system: dF ≤ 0. Inequality to zero describes the decrease of the Free Energy during irre-
versible processes.

2. Minimum of Enthalpy

Assume we have an isolated, closed system composed of two subsystems in mechanical
equilibrium with a work reservoir (walls between subsystem and work reservoir are movable),
i.e. P1 = P2 = Pres = P . Any work of resevoir done on (sub)systems is reversible so
that S = S1 + S2 = constant. The Enthalpy of this system can be expressed as dH =
dEint + PdV = δQ− δW + PdV = δQ. We also know that dS = 0 so that:

δQ

T
+ dSprod = 0 → δQ

T
= −dSprod ≤ 0

with equality only for reversible processes as there is no entropy production within the sys-
tem. Thus, dH = δQ ≤ 0.

If an isolated system composed of two subsystems is kept at constant pressure P with a
work reservoir through reversible processes (S is constant), the equilibrium state minimises
the enthalpy H of the system: dH = δQ ≤ 0.

3. Minimum of Gibbs/Free Enthalpy

Lastly, assume we have an isolated, closed system composed of two subsystems that are kept
at constant temperature T and constant pressure P due to their equilibrium with a heat
and work reservoir (walls are both diathermal and movable). The Gibbs/Free Enthalpy of
this system can be expressed as

dG = dEint − TdS + PdV = δQ− δW − TdS + PdV = δQ− TdS = δQ− δQ− TdSprod

→ dG = −TdSprod ≤ 0.

6



If constraint on wall separation (diathermal and movable) is relaxed, G will decrease (equal-
ity to zero for reversible processes only).

To summarise, if a system composed of two subsystems is kept at constant T and P (due
to a heat and work reservoir), the equilibrium state between subsystems minimises the
Gibbs/Free enthalpy of the system.
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