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5 Statistical Thermodynamics II

5.1 Microstates and Macrostates

Imagine a system with two coins: Coin-A and Coin-B. If you toss them, there are four
possible states with equal probabilities, 1

4 , namely

• Coin-A head and Coin-B head

• Coin-A head and Coin-B tail

• Coin-A tail and Coin-B head

• Coin-A tail and Coin-B tail

Each of the four states is called microstate. All microstates can be realised with an equal
probability. However, more relevant states are macrostates, which could be for example:

• Both coins are head

• One of the coins is head

• None of the coins is head

where the first and last macrostates contain one microstate and the second one contains two
microstates. Therefore, the probability for the second macrostate to be realised is twice as
large as for the other two.

In thermodynamics, a microstate of a gas can be defined by the position and velocity of the
every gas molecule, a macrostate is described by more global quantities such as a volume,
pressure and temperature. A set of different microstates may give the same macrostate. All
the microstates have an equal probability to be realised. The probability to realise a par-
ticular macrostate is proportional to the number of microstates resulting in that macrostate.

We denote Ω to be the number of microstates for a particular macrostate.

5.2 Microstates and thermal equilibrium (definition of Tempera-
ture)

Let us consider two thermodynamic systems, which are in thermal contact, but isolated from
their surroundings, i.e. they can exchange thermal energy between them but not with the
outside. The first system has the energy E1 and the second system E2. The total energy,
E = E1 + E2, is constant, since there is no energy exchange with outside. Therefore, E1

alone is enough to determine the microstates of the joint system.

We denote that Ω1(E1) as the number of the microstates in the first system and Ω2(E2)
for the second system. The total system then has Ω1(E1)Ω2(E2) microstates. When the
total system reaches equilibrium, E1 and E2 become stable. The system appears to take a
macroscopic configuration that maximises the number of microstates, which corresponds to
the highest probability, i.e. the most likely.
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Since Ω1(E1)Ω2(E2) is maximum,

d

dE1
[Ω1(E1)Ω2(E2)] = 0 (1)

It follows that

d

dE1
[Ω1(E1)Ω2(E2)] =

dΩ1(E1)

dE1
Ω2(E2) +

dΩ2(E2)

dE1
Ω1(E1)

=
dΩ1(E1)

dE1
Ω2(E2) +

dΩ2(E2)

dE2

dE2

dE1
Ω1(E1)

(2)

From E = E1 + E2 = constant, dE = dE1 + dE2 = 0, thus dE1 = −dE2. Then we have,

dΩ1(E1)

dE1
Ω2(E2)− Ω1(E1)

dΩ2(E2)

dE2
= 0 (3)

or
1

Ω1(E1)

dΩ1(E1)

dE1
=

1

Ω2(E2)

dΩ1(E2)

dE2
(4)

By noting
d ln f(x)

dx
=
df(x)

dx

d ln f(x)

df(x)
=

1

f(x)

df(x)

dx
(5)

It follows that
d ln Ω1(E1)

dE1
=
d ln Ω2(E2)

dE2
(6)

which is the equilibrium condition. In thermodynamics, this means that two systems are at
the same temperature. Therefore, the temperature is defined as

1

kT
=
d ln Ω

dE
(7)

with k being the Boltzmann constant.

5.3 Boltzmann Factor

We consider a small system A in thermal contact with a heat reservoir A’, which means
A’ is much larger than A, and denote Pr(Er) to be the probability to find A in any one
particular microstate r of energy Er.

The energy of the total system, A+A’, E0 is constant. It follows that

Pr(Er) ∝ Ω′(E0 − Er) (8)

where Ω′(E0−Er) is the number of microstates accessible by A’ when its energy is E0−Er.
Since A is much smaller than A’, Er � E0. The Taylor expansion of f(x0+x) for ε = x

x0
� 1,

is given by

f(x0 + x) = f(x0 + εx0) ≈ f(x0) +
df

dε
ε (9)
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where higher order in ε is neglected. Since x = εx0 and x0 is a constant,

d

dε
=
dx

dε

d

dx
= x0

d

dx
= x0

d

d(x0 + x)
(10)

It follows that

f(x0 + x) ≈ f(x0) +
df

d(x0 + x)
εx0 = f(x0) +

df

d(x0 + x)
x (11)

If we take f(x0 + x) to be ln Ω′(E0 − Er), where x0 = E0 and x = −Er, we obtain

ln Ω′(E0 − Er) ≈ ln Ω′(E0)− d ln Ω′(E0 − Er)
d(E0 − Er)

∣∣∣
Er=0

Er (12)

Since
d ln Ω′(E0 − Er)
d(E0 − Er)

∣∣∣
Er=0

=
1

kT
(13)

T being the temperature of the reservoir A’, which is also the temperature of A when they
are in thermal equilibrium, and

ln Ω′(E0 − Er) ≈ ln Ω′(E0)− Er
kT

, (14)

we obtain

Ω′(E0 − Er) = C exp(−Er
kT

) (15)

where C is a constant. It follows that

Pr(Er) ∝ e−
Er
kT (16)

The term e−
E
kT is called Boltzmann factor.

5.4 Maxwell-Boltzmann distribution of velocities of gas particles

Maxwell Distribution

The energy of a gas molecule with a mass m and velocity ~v = (vx, vy, vz) is given by,

E =
1

2
m(v2x + v2y + v2z) (17)

Using the Boltzmann factor, e−
E
kT , the probability to have a velocity between ~v = (vx, vy, vz)

and ~v + d~v = (vx + dvx, vy + dvy, vz + dvz) is given by

f(vx)f(vy)f(vz)dvxdvydvz =
( m

2πkT

)3/2
exp

[
− m

2kT
(v2x + v2y + v2z)

]
dvxdvydvz (18)

which is a Gauss distribution.
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A Gauss distribution in one dimension is generally given by

Gσ,x0
(x) =

1

σ
√

2π
exp

(
− (x− x0)2

2σ2

)
(19)

where x0 is the mean

〈x〉 =

∫ ∞
−∞

xGσ,x0(x)dx = x0 (20)

and σ2 the variance, i.e.
V ar(x) ≡ 〈(x− x0)2〉 (21)

leading to

〈(x− x0)2〉 =

∫ ∞
−∞

(x− x0)2Gσ,x0
(x)dx =

∫ ∞
−∞

(x− x0)2
1

σ
√

2π
exp

(
− (x− x0)2

2σ2

)
dx = σ2

(22)
So the distribution of the velocity components are given by the Gauss distribution with

x0 = 0, and σ2 =
m

kT
(23)

An important characteristic of a Gauss distribution is that the probability for x to be be-
tween x0 − σ and x0 + σ is ∼ 68.2%. Between x0 − 2σ and x0 + 2σ, the probability for x is
∼ 95.4%, and between x0 − 3σ and x0 + 3σ, it is 99.7%.

By recalling, v2 = v2x + v2y + v2z and dvxdvydvz = v2 sin θdvdθdφ, it follows that( m

2πkT

)3/2
exp

(
− m

2kT
(v2x + v2y + v2z)

)
dvx dvy dvz =

( m

2πkT

)3/2
exp

(
− m

2kT
v2
)
v2 sin θdvdθdφ

(24)
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Integration over θ and φ gives then

F (v)dv =
( m

2πkT

)3/2
v2 exp(− m

2kT
v2)dv

∫ π

0

sin θdθ

∫ 2π

0

dφ

= 4π
( m

2πkT

)3/2
v2 exp(− m

2kT
v2)dv

(25)

where

F (v) = 4π
( m

2πkT

)3/2
v2 exp

(
−mv

2

2kT

)
(26)

gives the probability distribution of the velocity, v.

Using F (v), called the Maxwell distribution of speeds, the average velocity, 〈v〉, is given by

〈v〉 =

∫ ∞
0

vF (v)dv (27)

Similarly, vrms is given by

vrms =
√
〈v2〉 =

√∫ ∞
0

v2F (v)dv (28)

Using the integrals discussed in the ”Mathematical Notes”,

I2(a) =

∫ ∞
0

x2 exp(−ax2)dx =

√
π

4
a−

3
2

I4(a) =

∫ ∞
0

x4 exp(−ax2)dx =
3
√
π

8
a−

5
2

(29)

we obtain ∫ ∞
0

F (v)dv = 4π
( m

2πkT

)3/2 ∫ ∞
0

v2 exp
(
− m

2kT
v2
)
dv

= 4π
( m

2πkT

)3/2 √π
4

( m

2kT

)−3/2
= 1

(30)

i.e. the probability function, F (v), is properly normalised, and∫ ∞
0

v2F (v)dv = 4π
( m

2πkT

)3/2 ∫ ∞
0

v4 exp
(
− m

2kT
v2
)
dv

= 4π
( m

2πkT

)3/2 3
√
π

8

( m

2kT

)−5/2
=

3kT

m

(31)

i.e.

vrms =
√
〈v2〉 =

√∫ ∞
0

v2F (v)dv =

√
3kT

m
(32)

which was needed in the previous section.

Equally, by using

I3(a) =

∫ ∞
0

x3 exp(−ax2)dx =
1

2
a−2 (33)
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we obtain ∫ ∞
0

vF (v)dv = 4π
( m

2πkT

)3/2 ∫ ∞
0

v3 exp
(
− m

2kT
v2
)
dv

= 4π
( m

2πkT

)3/2 1

2

( m

2kT

)−2
=

√
8kT

πm

(34)

Thus, the average velocity is given by

〈v〉 =

∫ ∞
0

vF (v)dv =

√
8kT

πm
(35)

Lastly, the most probable velocity vmp is given by:

d

dv
F (v = vmp) = 0 (36)

From F (v), it follows that

dF (v)

dv
= 8π

( m

2πkT

)3/2 [
v exp

(
− m

2kT
v2
)
− mv3

2kT
exp

(
− m

2kT
v2
)]

(37)

thus,

exp(− m

2kT
v2mp)−

mv2mp
2kT

exp(− m

2kT
v2mp) = 0 (38)

leading to
mv2mp
2kT

= 1 (39)

and therefore, we obtain

vmp =

√
2kT

m
. (40)
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Note that the trivial solution, v = 0, corresponds to the minimum.

It is interesting to remark that

vmp =

√
2kT

m
≈ 1.414

√
kT

m
, 〈v〉 =

√
8kT

πm
≈ 1.596

√
kT

m
, vrms =

√
3kT

m
≈ 1.732

√
kT

m
(41)

i.e. the three velocities are not so far apart. It is interesting to note that

v2rms =
3kT

m
= 3σ2 (42)

where σ is the standard deviation of the Gauss distribution giving the probability distribu-
tion of the velocity components.
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