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5 Statistical Thermodynamics 11

5.1 Microstates and Macrostates

Imagine a system with two coins: Coin-A and Coin-B. If you toss them, there are four
possible states with equal probabilities, +, namely

) 45
e Coin-A head and Coin-B head
e Coin-A head and Coin-B tail
e Coin-A tail and Coin-B head
e Coin-A tail and Coin-B tail

Each of the four states is called microstate. All microstates can be realised with an equal
probability. However, more relevant states are macrostates, which could be for example:

e Both coins are head
e One of the coins is head
e None of the coins is head

where the first and last macrostates contain one microstate and the second one contains two
microstates. Therefore, the probability for the second macrostate to be realised is twice as
large as for the other two.

In thermodynamics, a microstate of a gas can be defined by the position and velocity of the
every gas molecule, a macrostate is described by more global quantities such as a volume,
pressure and temperature. A set of different microstates may give the same macrostate. All
the microstates have an equal probability to be realised. The probability to realise a par-
ticular macrostate is proportional to the number of microstates resulting in that macrostate.

We denote 2 to be the number of microstates for a particular macrostate.

5.2 Microstates and thermal equilibrium (definition of Tempera-
ture)

Let us consider two thermodynamic systems, which are in thermal contact, but isolated from
their surroundings, i.e. they can exchange thermal energy between them but not with the
outside. The first system has the energy F; and the second system E5. The total energy,
E = E, + E,, is constant, since there is no energy exchange with outside. Therefore, F
alone is enough to determine the microstates of the joint system.

We denote that Q4 (F;) as the number of the microstates in the first system and Qs (FE?2)
for the second system. The total system then has Qy(F4)Q(E3) microstates. When the
total system reaches equilibrium, E; and F5 become stable. The system appears to take a
macroscopic configuration that maximises the number of microstates, which corresponds to
the highest probability, i.e. the most likely.



Since Q4 (F1)Q2(F>) is maximum,

d
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It follows that
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From E = F + E5 = constant, dE = dE| + dF> = 0, thus dE; = —dE5. Then we have,
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By noting

dinf(x) _ df(x)dnf(z) _ 1 df(x) (5)
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It follows that
dln Ql(El) - dln QQ(EQ)
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dE, dEs (6)
which is the equilibrium condition. In thermodynamics, this means that two systems are at
the same temperature. Therefore, the temperature is defined as

1 dinQ

kT dE Q

with k being the Boltzmann constant.

5.3 Boltzmann Factor

We consider a small system A in thermal contact with a heat reservoir A’; which means
A’ is much larger than A, and denote P,.(F,) to be the probability to find A in any one
particular microstate r of energy F.,..

The energy of the total system, A+A’, Ey is constant. It follows that
P.(E,) x QY (Ey— E,) (8)

where Q' (Ey — E,.) is the number of microstates accessible by A’ when its energy is Fg — E,..
Since A is much smaller than A’, F,. < Ey. The Taylor expansion of f(z¢+x) for e = =<1,
is given by

df

f(zo+ ) = f(zo + €xo) *f(l’o)+%€ 9)



where higher order in € is neglected. Since z = exg and x( is a constant,

d_dsd & _ 4 (10)
de ~ dedr  °dz ~ °d(zo + )

It follows that

df df

~ _ Y = . — 11
f(xo +2) = f(z0) + d(zo + 2) €xg = f(wo) + d(z +x)5€ (11)

If we take f(xg + ) to be InQ'(Ey — E,), where zy = Ey and x = —E,., we obtain
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T being the temperature of the reservoir A’, which is also the temperature of A when they
are in thermal equilibrium, and

E
In Q/(EO — ET) ~ th/(Eo) — i, (14)
kT
we obtain -
Q' (Ey— E,) = " 1
(Eo - Ey) = Cexp(—75) (15)
where C'is a constant. It follows that
P.(E,) o e  *T (16)

The term e~ #* is called Boltzmann factor.

5.4 Maxwell-Boltzmann distribution of velocities of gas particles

Maxwell Distribution
The energy of a gas molecule with a mass m and velocity ¥ = (v, vy, v,) is given by,
1 2, .2, 2
E = im(vw + vy, +v3) (17)

Using the Boltzmann factor, e~ 77, the probability to have a velocity between ¢ = (vy, vy, v;)
and U+ dU = (vy + dvg, vy + duy, v, + dv;) is given by

m \3/2 m
fz) f(vy) f(v2)dvgdvydv, = (W) exp [—%—T(vi + vi + vg)] dvgdvydv, (18)

which is a Gauss distribution.



A Gauss distribution in one dimension is generally given by

exp (—(x ;J§°)2> (19)

GU,QUD (Z‘) =

oV 2w

where xq is the mean

and o2 the variance, i.e.

Var(z) = ((z — x9)?) (21)
leading to
e3¢} e’} 1 _ 2
((x — x0)2) = / (x — aco)QG(,’gc0 (x)dx = / (x — x0)2 exp <—W) dx = o
-0 —oo o2 20
(22)
So the distribution of the velocity components are given by the Gauss distribution with
zo =0, and 0% = % (23)

An important characteristic of a Gauss distribution is that the probability for x to be be-
tween zg — o and g + o is ~ 68.2%. Between g — 20 and xg + 20, the probability for x is
~ 95.4%, and between xg — 30 and zg + 30, it is 99.7%.
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By recalling, v* = v2 + v; + v2 and dv,dvydv, = v*sin @dvdfde, it follows that

m \3/2 mo, o 9 9 _ m \3/2 moN\ .
R



Integration over € and ¢ gives then
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gives the probability distribution of the velocity, v.

F(v)dv = (

where

(26)

Using F'(v), called the Maxwell distribution of speeds, the average velocity, (v), is given by

() = /O R ()dv
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Using the integrals discussed in the ”Mathematical Notes”,

Similarly, vy, is given by

I5(a) :/ 22 exp(—az?)dz =
0

I4(a):/ zt exp(—ax?)dz = a3
0
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i.e. the probability function, F'(v), is properly normalised, and

/000 v?F(v)dv = 47 (%)3/2 /OOO vt exp (-%f) dv
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which was needed in the previous section.

we obtain

i.e.

Equally, by using
o0 . 1
I3(a) = / 23 exp(—ax?)dx = §a72
0

(27)
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we obtain
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Thus, the average velocity is given by
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Lastly, the most probable velocity vy, is given by:

d
%F(v =Upp) =0
From F(v), it follows that

3

o= (r) e (i) - i

thus,
2
_ M2y __m 2
exP(= g Vm) = S P g Ve
leading to
mvfnp )
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and therefore, we obtain
2kT
v =
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Note that the trivial solution, v = 0, corresponds to the minimum.

It is interesting to remark that

[2kT [kT |8kT (kT [3kT (kT

Ump =4/ — ~ 14144/ —, (v) =/ — =~ 1.5964/ —, Vpms =/ — ~ 1.7324/ —
m m ™m m m m

(41)

i.e. the three velocities are not so far apart. It is interesting to note that

> _ BKT _

rms ~

- 302 (42)

v

where o is the standard deviation of the Gauss distribution giving the probability distribu-
tion of the velocity components.



