
Recap… Chapter 1+2, Temperature and 0th law of TD

•How to characterise T, which scales exist?


•Temperature is a measure how hot or cold something is (a  
“state variable”, only dependent of the current state of a system).

•The temperature of a body is given either as absolute temperature T in 

Kelvin or Celsius temperature Tc/C = T/K - 273.25 (also Fahrenheit scale, 
less used)


•What is meant with thermal equilibrium?


•Thermal equilibrium: if two objects with different T are placed in contact, 
they may reach the same temperature and are then said to be in thermal 
equilibrium (not net flow of thermal energy).


•What is the 0th law of Thermodynamics?


• 0th law of Thermodynamics: If two systems are in thermal equilibrium 
with a third system, then they are in thermal equilibrium with each other.
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Recap… Chapter 1+2, Thermal expansion
•What is thermal expansion?


• The change in length of a solid, when its temperature changes is directly proportional to the T 
change (valid only if T change small!!)


• Δl =αl0ΔT, α: coefficient of linear expansion

• The change of volume of most solids, liquids and gases is proportional to the T change (small!!) 

and to the original volume ΔV = βV0ΔT, β ≈ 3α


•Which property of T is important that thermometers function? Which materials are 
particularly well suited for measuring T?


• Expansion of liquids/gases. The higher the beta and alpha, the better suited for measuring T —> 
Mercury well suited: uniform thermal expansion over a wide temperature range, high boiling point, 
& low freezing point.


•Give a physical explanation for the fact that thermal expansion coefficients of liquids 
are typically larger than that of solids.


• Solids: molecules are tightly bound in a fixed, orderly arrangement (e.g. lattice) —> when heated, 
the molecules vibrate more vigorously but generally maintain their relative positions, leading to a 
smaller overall expansion


• Liquids: molecules are less tightly bound and can move around more freely.   —> When heated, 
these particles move more readily, leading to a more significant increase in volume.
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Recap… Thermal expansion

•Linear expansion formula Δl =αl0ΔT accurately valid only for 
infinitely small changes in T

•For n heating steps, i.e. a continuous rise of T, the accurate 
formula is l = l0 e αΔT



Recap… Thermal expansion

How much should I care?

• Melting temperature of:
Aluminium – 933 K
Iron – 1811 K

• Estimate a 1 meter long iron bar and aluminium bar: assuming linear 
thermal expansion from room temperature (300 K) to melting point, 
the length will be:    

• Compare your results with that obtained from the precise formula of
thermal expansion …

“Not much, unless you melt the solid!!”

delta l (Al) = 25e-6/K x 633 K x 1m = 0.01583m

delta l (Fe) = 12e-6/K x 1511K x 1m = 0.0181m 

l (Al) = 1m x exp(25e-6/K x 633 K) = 1.01595 —> delta l = 0.01595 m

l (Fe) = 1m x exp(12e-6/K x 1511K) = 1.0183 —> delta l = 0.0183 m



Conceptual Questions:

• If you heat a thin circular ring in the oven, does the ring’s hole get larger or smaller? 
youtube demonstration: https://www.youtube.com/watch?v=nA-WJyq19H8 


•When the ring is heated uniformly, all parts of it, including both the 
material of the ring and the space of the hole, expand. Since the 
material is expanding in all directions, the metal around the hole also 
expands outward, making the hole larger.


• It might seem counterintuitive at first, as one might expect the material 
to expand and close up the hole. However, it's important to remember 
that the expansion is uniform in all directions. Each segment of the 
ring, no matter where it is located, moves outward from the center of 
the ring as it expands, thus increasing the diameter of the hole.


•Opening a tight jar lid: When the lid of a glass is tight, holding the lid under hot water 
for a short time will often make it easier to open. Why?


•Because the metal has a higher expansion coefficient than the glass, 
thus, it expands more than the glass at higher T —> easier to open

https://www.youtube.com/watch?v=nA-WJyq19H8
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Recap… Chapter 1+2, Thermal expansion

•Would the linear expansion coefficient change if we used millimeters or feet instead of 
meters?


•The linear expansion coefficient of a material, expressed in terms of 
temperature change, is an intrinsic property of the material and does not 
depend on the unit of length measurement used.


•What is meant with the anomalous behaviour of water?


•Most materials: volume increases (density decreases) with incrasing T

• Instead, water behaves unusual because, its volume in the range of from 0 to 4 

C actually decreases (and its density increases) as T increases (ice is “lighter” 
than water)


•What is thermal stress and how can it be computed?


•Because of thermal expansion, thermal stresses can occur if materials are 
rigidly fixed and T changes. The required compression to keep an object at its 
original length can be computed via Young’s modulus E, Δl =1/E P l0 
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•What is the definition of an ideal gas, under which conditions can we consider a 
gas to be ideal? 


•Volume of particles and interactions between them neglected.


•What are different gas laws discovered in the 17-19th centuries?


•What is the equation of state of ideal gas?


•Which corrections are assumed for real gases (van der Waals gas)?

Recap… Chapter 3, Gas laws
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Thermodynamic (2nd week) 
The Laws of Gas  
The state of a gas depends on the volume (V), pressure (P), and temperature (T). The relation 
between the volume, pressure, temperature and mass of the gas is called an equation of state. The 
equation of state can be applied for a state in equilibrium, i.e. the pressure and temperature are 
uniform over the volume and do not change with time.  
Don't through a left over hair spray into fire. 
 
Gas laws are: 
 Boyle's law: PV is constant when T is kept constant, for a given quantity of gas.  
 Charles's law: V is proportional to T (in Kelvin) when P is kept constant. 
 Gay-Lussac's law: P is proportional to T (in Kelvin) when V is kept constant. 
 Avogadro's law: Gasses with identical P, T and V contain the same number of molecules.  
The first three laws lead to 

€ 

P ×V ∝ T .  
From the dimensional point of view,  

€ 

P :  N m2[ ],  V :  m3[ ],   
thus 

€ 

P ×V :  Nm = Joul[ ]  
has a dimension of energy. By combining four laws, we introduce the following equation of state for 
an "ideal" gas: 

€ 

PV = NkT  
where N is the number of gas molecules and k is called Boltzmann constant given by   

€ 

k =1.38 ×10−23 J⋅ K−1. 
Let us recall, the atomic mass unit, where 1 u corresponds the mass of the 

€ 

12C divided by 12 and  

€ 

1 u =1.6605 ×10−27  kg =1.6605 ×10−24  g  
Therefore, in 12 g of 

€ 

12C, there are  

€ 

12 g
12 ×1.6605 ×10-24  g

=
1

1.6605 ×10-24 = 6.02 ×1023 ≡ NA 

of 

€ 

12C  atoms. This 

€ 

NA  is called Avogadro's number. We introduce a new unit, called Mole, 
corresponding to 

€ 

NA  particles. We can then rewrite the equation of state for ideal gas to be   

€ 

PV = nRT  
where,  

€ 

R = NA × k = 8.314 J mol⋅ K( )  
is called the universal gas constant and   

€ 

n =
N
NA

 mol 
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b: volume correction)



•What is the definition of an ideal gas, under which conditions can we consider a 
gas to be ideal? 


•Volume of particles and interactions between them neglected.


•What are different gas laws discovered in the 17-19th centuries?


•What is the equation of state of ideal gas?


•Which corrections are assumed for real gases (van der Waals gas)?

Recap… Chapter 3, Gas laws
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▪ Van der Waals Introduced a constant (b) for volume correction
▪ A second term (a) is introduced for pressure correction

𝑃 =
𝑛𝑅𝑇

(𝑉 − 𝑛𝑏) −
𝑛2𝑎
𝑉2

(b) equal to the actual volume occupied by the molecules of 1 mol gas, with unit 
[ Τ𝐿 𝑚𝑜𝑙]
(a) reflects how strong the gas molecules attract to each other, with unit 
[𝐿2˗atm/𝑚𝑜𝑙2]

Both a and b are gas dependent.

Van der Waals equation:  𝑷 + 𝒏𝟐𝒂
𝑽𝟐

𝑽 − 𝒏𝒃 = 𝒏𝑹𝑻

Real gas:
Deviations from ideal behavior 
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(a: pressure correction, 

b: volume correction)



•What is the definition of an ideal gas, under which conditions can we consider a 
gas to be ideal? 


•Volume of particles and interactions between them neglected.


•What are different gas laws discovered in the 17-19th centuries?


•What is the equation of state of ideal gas?


•Which corrections are assumed for real gases (van der Waals gas)?

Recap… Chapter 3, Gas laws
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▪ Van der Waals Introduced a constant (b) for volume correction
▪ A second term (a) is introduced for pressure correction

𝑃 =
𝑛𝑅𝑇

(𝑉 − 𝑛𝑏) −
𝑛2𝑎
𝑉2

(b) equal to the actual volume occupied by the molecules of 1 mol gas, with unit 
[ Τ𝐿 𝑚𝑜𝑙]
(a) reflects how strong the gas molecules attract to each other, with unit 
[𝐿2˗atm/𝑚𝑜𝑙2]

Both a and b are gas dependent.

Van der Waals equation:  𝑷 + 𝒏𝟐𝒂
𝑽𝟐

𝑽 − 𝒏𝒃 = 𝒏𝑹𝑻

Real gas:
Deviations from ideal behavior 

G
en

er
al

 P
hy

si
cs

 II
: T

he
rm

od
yn

am
ic

s

Y
ao

.C
he

n

6

(a: pressure correction, 

b: volume correction)



•What is the definition of an ideal gas, under which conditions can we consider a 
gas to be ideal? 


•Volume of particles and interactions between them neglected.


•What are different gas laws discovered in the 17-19th centuries?


•What is the equation of state of ideal gas?


•Which corrections are assumed for real gases (van der Waals gas)?

Recap… Chapter 3, Gas laws
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▪ Van der Waals Introduced a constant (b) for volume correction
▪ A second term (a) is introduced for pressure correction

𝑃 =
𝑛𝑅𝑇

(𝑉 − 𝑛𝑏) −
𝑛2𝑎
𝑉2

(b) equal to the actual volume occupied by the molecules of 1 mol gas, with unit 
[ Τ𝐿 𝑚𝑜𝑙]
(a) reflects how strong the gas molecules attract to each other, with unit 
[𝐿2˗atm/𝑚𝑜𝑙2]

Both a and b are gas dependent.

Van der Waals equation:  𝑷 + 𝒏𝟐𝒂
𝑽𝟐

𝑽 − 𝒏𝒃 = 𝒏𝑹𝑻

Real gas:
Deviations from ideal behavior 
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(a: pressure correction, 

b: volume correction)



•What is the definition of an ideal gas, under which conditions can we consider a 
gas to be ideal? 


•Volume of particles and interactions between them neglected.


•What are different gas laws discovered in the 17-19th centuries?


•What is the equation of state of ideal gas?


•Which corrections are assumed for real gases (van der Waals gas)?

Recap… Chapter 3, Gas laws
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▪ Van der Waals Introduced a constant (b) for volume correction
▪ A second term (a) is introduced for pressure correction

𝑃 =
𝑛𝑅𝑇

(𝑉 − 𝑛𝑏) −
𝑛2𝑎
𝑉2

(b) equal to the actual volume occupied by the molecules of 1 mol gas, with unit 
[ Τ𝐿 𝑚𝑜𝑙]
(a) reflects how strong the gas molecules attract to each other, with unit 
[𝐿2˗atm/𝑚𝑜𝑙2]

Both a and b are gas dependent.

Van der Waals equation:  𝑷 + 𝒏𝟐𝒂
𝑽𝟐

𝑽 − 𝒏𝒃 = 𝒏𝑹𝑻

Real gas:
Deviations from ideal behavior 
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(a: pressure correction, 

b: volume correction)



Recap… Chapter 4, Kinetic theory of gases
•What is meant with the kinetic theory of gases, and for which type of gas is it valid?


•Connection between macroscopic variables of a gas, such as P, T, V etc. and 
microscopic properties of atoms/molecules, such as their kinetic energy and 
velocity.

•Applicable for ideal gas, elastic collisions and random velocities which are 

isotropic.


•What is the relation between Pressure, Volume and particle velocity?


•How is the kinetic energy of ideal gas related to macroscopic T?


•How can we compute the root-mean-square velocity vrms of gas particles?
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By denoting the area of the wall A to be S, the pressure is given by  
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where 

€ 

K = m v2 2 is the average of the kinetic energy of the gas molecule. By comparing this to 
the equation of the state for the ideal gas,  

€ 

PV = NkT  
we can conclude 

€ 

K =
3
2
kT  

i.e. the average kinetic energy of the molecule of an ideal gas is directly proportional to the absolute 
temperature. What is the average kinetic energy of an ideal gas molecule at   

€ 

37!  C? Noting that 
  

€ 

37!  C  is 310  K and we obtain  

€ 

K =
3
2
kT =

3
2
⋅ 1.38 ×10−23 J K ⋅ 310 K = 6.42 ×10−21 J

 
For one mole of molecules, the kinetic energy becomes 

€ 

NA K = 6.02 ×1023⋅ 6.42 ×10−21 J = 3860 J ≈1 kcal. 
The root-mean-squared velocity of an ideal gas molecule at an absolute temperature T is then given 
by  
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The root-mean-squared velocity of 
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O2 (molecular mass 32 u) and 
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N2 (molecular mass 28 u) at 
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37!  C  can be calculated using the above equation. Since 1 u corresponds to 
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1.66 ×10−27  kg , the 
masses of one molecule for them are given by  
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and 
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4.6 ×10−26kg
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Note that the lighter gas molecule moves faster at a same temperature.  



Recap… Chapter 4, Kinetic theory of gases
•What is meant with the kinetic theory of gases, and for which type of gas is it valid?


•Connection between macroscopic variables of a gas, such as P, T, V etc. and 
microscopic properties of atoms/molecules, such as their kinetic energy and 
velocity.

•Applicable for ideal gas, elastic collisions and random velocities which are 

isotropic.


•What is the relation between Pressure, Volume and particle velocity?


•How is the kinetic energy of ideal gas related to macroscopic T?


•How can we compute the root-mean-square velocity vrms of gas particles?

 4 

€ 

F =
mvx

2

l
. 

Now we consider the case where there are a large number of N molecules. The force then becomes  

€ 

F =

m vx
i 2

i=1

N

∑

l
 

By introducing the average of 

€ 

vx
2 , given by  

€ 

vx
2 =

vx
i 2

i=1

N

∑

N
 

the force can be given by  

€ 

F =
Nm vx

2

l
 

Recalling 

€ 

v2 = vx
2 + vy

2 + vz
2, it follows that  

€ 

v2 =
1
N

vx
i 2 + vy

i 2 + vz
i 2( )

i=1

N

∑ =
1
N

vx
i 2

i=1

N

∑ + vy
i 2

i=1

N

∑ + vz
i 2

i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = vx

2 + vy
2 + vz

2  

If the movement of the gas molecules are random and isotropic, 

€ 

vx
2 = vy

2 = vz
2 , thus 

€ 

vx
2 =

v2

3
 

and 

€ 

F =
Nm v2

3l
 

By denoting the area of the wall A to be S, the pressure is given by  

€ 

P =
F
S

=
Nm v2

3lS
=
Nm v2

3V
 

where V is the volume of the container. It follows that  

€ 

PV =
2
3
N m
2
v2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

2
3
N K  

where 

€ 

K = m v2 2 is the average of the kinetic energy of the gas molecule. By comparing this to 
the equation of the state for the ideal gas,  

€ 

PV = NkT  
we can conclude 

€ 

K =
3
2
kT  

i.e. the average kinetic energy of the molecule of an ideal gas is directly proportional to the absolute 
temperature. What is the average kinetic energy of an ideal gas molecule at   

€ 

37!  C? Noting that 
  

€ 

37!  C  is 310  K and we obtain  

€ 

K =
3
2
kT =

3
2
⋅ 1.38 ×10−23 J K ⋅ 310 K = 6.42 ×10−21 J

 
For one mole of molecules, the kinetic energy becomes 

€ 

NA K = 6.02 ×1023⋅ 6.42 ×10−21 J = 3860 J ≈1 kcal. 
The root-mean-squared velocity of an ideal gas molecule at an absolute temperature T is then given 
by  

 4 

€ 

F =
mvx

2

l
. 

Now we consider the case where there are a large number of N molecules. The force then becomes  

€ 

F =

m vx
i 2

i=1

N

∑

l
 

By introducing the average of 

€ 

vx
2 , given by  

€ 

vx
2 =

vx
i 2

i=1

N

∑

N
 

the force can be given by  

€ 

F =
Nm vx

2

l
 

Recalling 

€ 

v2 = vx
2 + vy

2 + vz
2, it follows that  

€ 

v2 =
1
N

vx
i 2 + vy

i 2 + vz
i 2( )

i=1

N

∑ =
1
N

vx
i 2

i=1

N

∑ + vy
i 2

i=1

N

∑ + vz
i 2

i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = vx

2 + vy
2 + vz

2  

If the movement of the gas molecules are random and isotropic, 

€ 

vx
2 = vy

2 = vz
2 , thus 

€ 

vx
2 =

v2

3
 

and 

€ 

F =
Nm v2

3l
 

By denoting the area of the wall A to be S, the pressure is given by  

€ 

P =
F
S

=
Nm v2

3lS
=
Nm v2

3V
 

where V is the volume of the container. It follows that  

€ 

PV =
2
3
N m
2
v2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

2
3
N K  

where 

€ 

K = m v2 2 is the average of the kinetic energy of the gas molecule. By comparing this to 
the equation of the state for the ideal gas,  

€ 

PV = NkT  
we can conclude 

€ 

K =
3
2
kT  

i.e. the average kinetic energy of the molecule of an ideal gas is directly proportional to the absolute 
temperature. What is the average kinetic energy of an ideal gas molecule at   

€ 

37!  C? Noting that 
  

€ 

37!  C  is 310  K and we obtain  

€ 

K =
3
2
kT =

3
2
⋅ 1.38 ×10−23 J K ⋅ 310 K = 6.42 ×10−21 J

 
For one mole of molecules, the kinetic energy becomes 
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Note that the lighter gas molecule moves faster at a same temperature.  



Recap… Chapter 4, Kinetic theory of gases
•What is meant with the kinetic theory of gases, and for which type of gas is it valid?


•Connection between macroscopic variables of a gas, such as P, T, V etc. and 
microscopic properties of atoms/molecules, such as their kinetic energy and 
velocity.

•Applicable for ideal gas, elastic collisions and random velocities which are 

isotropic.


•What is the relation between Pressure, Volume and particle velocity?


•How is the kinetic energy of ideal gas related to macroscopic T?


•How can we compute the root-mean-square velocity vrms of gas particles?
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For one mole of molecules, the kinetic energy becomes 
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NA K = 6.02 ×1023⋅ 6.42 ×10−21 J = 3860 J ≈1 kcal. 
The root-mean-squared velocity of an ideal gas molecule at an absolute temperature T is then given 
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€ 

O2 (molecular mass 32 u) and 

€ 

N2 (molecular mass 28 u) at 
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masses of one molecule for them are given by  
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Note that the lighter gas molecule moves faster at a same temperature.  



Recap… Chapter 4, Kinetic theory of gases
•What is meant with the kinetic theory of gases, and for which type of gas is it valid?


•Connection between macroscopic variables of a gas, such as P, T, V etc. and 
microscopic properties of atoms/molecules, such as their kinetic energy and 
velocity.

•Applicable for ideal gas, elastic collisions and random velocities which are 

isotropic.


•What is the relation between Pressure, Volume and particle velocity?


•How is the kinetic energy of ideal gas related to macroscopic T?


•How can we compute the root-mean-square velocity vrms of gas particles?
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Quizzzz time
•The T of an ideal gas increases. Which of the following is true? a) the pressure must 

decrease. b) the pressure must increase. c) the pressure must increase while the 
volume decreases. d) the volume must increase while the pressure decreases. e) the 
pressure, the volume or both may increase.


• PV = nRT —> e) is the correct answer.


•An ideal gas in a sealed rigid container (closed system). The average kinetic energy of 
the gas molecules depends mostly on a) the size of the container; b) the number of 
molecules in the container; c) the temperature of the gas; d) the mass of the 
molecules. What about the rms velocity of gas molecules?


• c) the T of the gas.


• The rms velocity is additionally dependent on the mass of a particle/molecule.


•Why should you not put a closed, empty glass jar with the lid on tight into a 
campfire? What could happen?


• Heat Expansion: —> pressure increase! 

• Glass Breaking: Glass can break or shatter due to thermal stress caused by uneven heating or 

rapid temperature changes, in particular if the glass transitions quickly from being hot to cool.

• —> Risk of Explosion due to combination of increased internal pressure and the thermal stress



Quizzzz time
•The T of an ideal gas increases. Which of the following is true? a) the pressure must 

decrease. b) the pressure must increase. c) the pressure must increase while the 
volume decreases. d) the volume must increase while the pressure decreases. e) the 
pressure, the volume or both may increase.


• PV = nRT —> e) is the correct answer.


•An ideal gas in a sealed rigid container (closed system). The average kinetic energy of 
the gas molecules depends mostly on a) the size of the container; b) the number of 
molecules in the container; c) the temperature of the gas; d) the mass of the 
molecules. What about the rms velocity of gas molecules?


• c) the T of the gas.


• The rms velocity is additionally dependent on the mass of a particle/molecule.


•Why should you not put a closed, empty glass jar with the lid on tight into a 
campfire? What could happen?


• Heat Expansion: —> pressure increase! 

• Glass Breaking: Glass can break or shatter due to thermal stress caused by uneven heating or 

rapid temperature changes, in particular if the glass transitions quickly from being hot to cool.

• —> Risk of Explosion due to combination of increased internal pressure and the thermal stress



Quizzzz time
•The T of an ideal gas increases. Which of the following is true? a) the pressure must 

decrease. b) the pressure must increase. c) the pressure must increase while the 
volume decreases. d) the volume must increase while the pressure decreases. e) the 
pressure, the volume or both may increase.


• PV = nRT —> e) is the correct answer.


•An ideal gas in a sealed rigid container (closed system). The average kinetic energy of 
the gas molecules depends mostly on a) the size of the container; b) the number of 
molecules in the container; c) the temperature of the gas; d) the mass of the 
molecules. What about the rms velocity of gas molecules?


• c) the T of the gas.


• The rms velocity is additionally dependent on the mass of a particle/molecule.


•Why should you not put a closed, empty glass jar with the lid on tight into a 
campfire? What could happen?


• Heat Expansion: —> pressure increase! 

• Glass Breaking: Glass can break or shatter due to thermal stress caused by uneven heating or 

rapid temperature changes, in particular if the glass transitions quickly from being hot to cool.

• —> Risk of Explosion due to combination of increased internal pressure and the thermal stress



Quizzzz time
•The T of an ideal gas increases. Which of the following is true? a) the pressure must 

decrease. b) the pressure must increase. c) the pressure must increase while the 
volume decreases. d) the volume must increase while the pressure decreases. e) the 
pressure, the volume or both may increase.


• PV = nRT —> e) is the correct answer.


•An ideal gas in a sealed rigid container (closed system). The average kinetic energy of 
the gas molecules depends mostly on a) the size of the container; b) the number of 
molecules in the container; c) the temperature of the gas; d) the mass of the 
molecules. What about the rms velocity of gas molecules?


• c) the T of the gas.


• The rms velocity is additionally dependent on the mass of a particle/molecule.


•Why should you not put a closed, empty glass jar with the lid on tight into a 
campfire? What could happen?


• Heat Expansion: —> pressure increase! 

• Glass Breaking: Glass can break or shatter due to thermal stress caused by uneven heating or 

rapid temperature changes, in particular if the glass transitions quickly from being hot to cool.

• —> Risk of Explosion due to combination of increased internal pressure and the thermal stress



Quizzz time

• Two ideal gases, A & B, are at the same T. If the molecular mass of the molecules in gas A is twice that of 
molecules in gas B, the molecules’ root-mean-square velocity is a) the same in both gases; b) twice as 
great in A; c) 1.4 times greater in A; d) twice as great in B; or e) 1.4 times greater in B?


• e) is correct. v_rms ~ 1/sqrt(m) —> This is because if the molecular mass of A is twice that of B, 
the rms velocity of A will be smaller by a factor of 1/sqrt(2), and hence, the rms velocity of B will 
be 1.4 times greater than that of A.


• mA = 2 mB; & v_rms,B ~ 1/sqrt(mB)


• then: v_rms,A ~ 1/sqrt(2 mB) = 1/sqrt(2) v_rms,B


• Solving for v_rms,B = sqrt(2) v_rms,A


• In a mixture of the gases Oxygen and Helium, which statement is valid? a) The He atoms will be moving 
faster than the O molecules on average; b) both will be moving at the same speed. c) The O molecules will 
be on average moving faster. d) The kinetic energy of the He atoms will exceed that of the O molecules. e) 
none of the above.


• a) is correct, because He atoms are lighter… Oxygen (O₂) is a diatomic molecule with a molar 
mass of approximately 32 g/mol (16 g/mol for each oxygen atom), whereas Helium (He) is a 
monatomic gas with a molar mass of about 4 g/mol. Thus, oxygen molecules are heavier than 
helium atoms.



Quizzz time

• Two ideal gases, A & B, are at the same T. If the molecular mass of the molecules in gas A is twice that of 
molecules in gas B, the molecules’ root-mean-square velocity is a) the same in both gases; b) twice as 
great in A; c) 1.4 times greater in A; d) twice as great in B; or e) 1.4 times greater in B?


• e) is correct. v_rms ~ 1/sqrt(m) —> This is because if the molecular mass of A is twice that of B, 
the rms velocity of A will be smaller by a factor of 1/sqrt(2), and hence, the rms velocity of B will 
be 1.4 times greater than that of A.


• mA = 2 mB; & v_rms,B ~ 1/sqrt(mB)


• then: v_rms,A ~ 1/sqrt(2 mB) = 1/sqrt(2) v_rms,B


• Solving for v_rms,B = sqrt(2) v_rms,A


• In a mixture of the gases Oxygen and Helium, which statement is valid? a) The He atoms will be moving 
faster than the O molecules on average; b) both will be moving at the same speed. c) The O molecules will 
be on average moving faster. d) The kinetic energy of the He atoms will exceed that of the O molecules. e) 
none of the above.


• a) is correct, because He atoms are lighter… Oxygen (O₂) is a diatomic molecule with a molar 
mass of approximately 32 g/mol (16 g/mol for each oxygen atom), whereas Helium (He) is a 
monatomic gas with a molar mass of about 4 g/mol. Thus, oxygen molecules are heavier than 
helium atoms.



Quizzz time

• Two ideal gases, A & B, are at the same T. If the molecular mass of the molecules in gas A is twice that of 
molecules in gas B, the molecules’ root-mean-square velocity is a) the same in both gases; b) twice as 
great in A; c) 1.4 times greater in A; d) twice as great in B; or e) 1.4 times greater in B?


• e) is correct. v_rms ~ 1/sqrt(m) —> This is because if the molecular mass of A is twice that of B, 
the rms velocity of A will be smaller by a factor of 1/sqrt(2), and hence, the rms velocity of B will 
be 1.4 times greater than that of A.


• mA = 2 mB; & v_rms,B ~ 1/sqrt(mB)


• then: v_rms,A ~ 1/sqrt(2 mB) = 1/sqrt(2) v_rms,B


• Solving for v_rms,B = sqrt(2) v_rms,A


• In a mixture of the gases Oxygen and Helium, which statement is valid? a) The He atoms will be moving 
faster than the O molecules on average; b) both will be moving at the same speed. c) The O molecules will 
be on average moving faster. d) The kinetic energy of the He atoms will exceed that of the O molecules. e) 
none of the above.


• a) is correct, because He atoms are lighter… Oxygen (O₂) is a diatomic molecule with a molar 
mass of approximately 32 g/mol (16 g/mol for each oxygen atom), whereas Helium (He) is a 
monatomic gas with a molar mass of about 4 g/mol. Thus, oxygen molecules are heavier than 
helium atoms.



Recap… Chapter 5, Microstates, Macrostates of gas & thermal equilibrium
•What are Microstates and Macrostates?


•Microstates of gas: 

•Properties, such as position and velocity, of individual gas particles

•Every microstate is equally probable 


•Macrostates of gas: 

•Described by global quantities, such as T, V, P, E, etc.

•Set of different microstates can lead to the same macrostate

•Probability of macrostate: sum of probabilities of microstates leading to 

macrostate (macro state can never be less likely than a microstate)


•What is thermal equilibrium from a statistical point of view?


•A system takes on that macroscopic configuration which maximises the number of 
microstates (highest probability)

•The most likely macrostate is thermal equilibrium, i.e. two systems in contact have the 

same T (“Boltzmann argument”)
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Recap… Chapter 5, Boltzmann factor and Maxwell distribution of gas speeds

•What is the Boltzmann factor?

•A factor to describe the probability that a system has an energy E:


•What is probability that one gas particle has a velocity vector vx, vy, vz?


•What is the Maxwell-Boltzmann distribution of absolute speeds of gas particles? 
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Recap… Chapter 5, Boltzmann factor and Maxwell distribution of gas speeds

•What is the Boltzmann factor?

•A factor to describe the probability that a system has an energy E:
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•What is the Maxwell-Boltzmann distribution of absolute speeds of gas particles? 
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Recap… Chapter 5, Boltzmann factor and Maxwell distribution of gas speeds

•What is the Boltzmann factor?

•A factor to describe the probability that a system has an energy E:


•What is probability that one gas particle has a velocity vector vx, vy, vz?


•What is the Maxwell-Boltzmann distribution of absolute speeds of gas particles? 


 3 

€ 

lnΩ E 0 − Er( ) ≈ lnΩ E 0( ) −
d lnΩ E 0 − Er( )
d E 0 − Er( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
Er =0

Er  

Since  

€ 

d lnΩ E 0 − Er( )
d E 0 − Er( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
Er =0

=
1
kT

 

T being the temperature of the reservoir A', which is also the temperature of A when they are in 
thermal equilibrium, and  

€ 

lnΩ E 0 − Er( ) ≈ lnΩ E 0( ) − Er

kT
 

thus  

€ 

Ω E 0 − Er( ) = Ce−Er kT  
where C is a constant. It follows that  

€ 

Pr Er( )∝ e−Er kT  
The term, 

€ 

e−E kT , is called a Boltzmann factor.  
 
Velocity components and velocity distribution of molecule 
Maxwell Distribution (391) 
The energy of a gas molecule with a mass m and velocity   

€ 

! v = vx ,  vy,  vz( ) is given by,   

€ 

E =
m
2
vx
2 + vy

2 + vz
2( )  

Using the Boltzmann factor, 

€ 

e−E kT , the probability to have a velocity between   

€ 

! v = vx ,  vy,  vz( ) and 

  

€ 

! v + d! v = vx + dvx ,  vy + dvy,  vz + dvz( ) is given by  

€ 

f vx( ) f vy( ) f vz( )dvxdvydvz =
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

exp −
m
2kT

vx
2 + vy

2 + vz
2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
dvxdvydvz  

which is a Gauss distribution.  
A Gauss distribution in one dimension is generally given by  

 
where x0 is the mean  

 
and σ variance, i.e.  

 
leading to 

 
So the distribution of the velocity components are given by the Gauss distribution with  

 

€ 

Gσ , x0
x( ) =

1
σ 2π

exp −
x − x0( )2

2σ2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
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€ 

x = xGσ , x0
x( )dx

−∞

∞∫ = x0

€ 

Var x( ) ≡ x − x0( )2

€ 

x − x0( )2
= x − x0( )2

Gσ , x0
x( )dx

−∞

∞∫ = ʹ x 2Gσ , x0
ʹ x + x0( )dx

−∞

∞∫ =
1

σ 2π
ʹ x 2 exp −

ʹ x 2

2σ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dx

−∞

∞∫ =σ2

€ 

x0 = 0  and  σ2 =
m
kT
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An important characteristics of a Gauss distribution is that the probability for x to be between  
and  is ~68.2%. Equally for between  and , ~95.4%, and for between  
and , ~99.7%.  
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Recap… Chapter 5, Boltzmann factor and Maxwell distribution of gas speeds

•What are the definitions of rms, most probable and mean speed?


•Which lines in the Plot below represent the most probable speed, the average speed 
and the root mean square speed ?

<latexit sha1_base64="IShIQuMsb+LZVtHgZ9EBebX6xdk="></latexit>

hvi =
Z

vF (v)dv; vrms =
p

hv2i; vmp =
d

dv
F (v) = 0

•How do the speeds depend on T?
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Recap… Chapter 6, Energy, heat and work in TD

•What is the internal and thermal energy? What is the internal energy of ideal gas? 


• Internal energy Eint:  total amount of energy of all molecules, sum of thermal and 
potential energy 


•Thermal energy Etherm: kinetic energy due to translation, rotation and vibrations


•Eint of ideal gas (no potential energy) = Etherm


•State variables


•How can we describe the “flow of energy”?


•Heat: transfer of energy between objects due to T difference/change


•Work: transfer of mechanical energy independent of T (e.g. PV)


•NO state variables


•Conservation of energy: Delta Eint = Q - W (main focus of this lecture!!)

 1 

General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 08:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (4th week) 
Energy, Heat, and Work 
Energy 
A unit of energy more related to thermal energy: 
1 calorie (cal) = energy needed to increase the temperature of 1 g of water by 1 Celsius degree 
1 cal = 4.186 J = 4.186 Nm 
 
Temperature T in Kelvin: a measure of the average kinetic energy of individual molecules  
Internal Energy 

€ 

E int: total energy contained by a thermodynamic system  
 = thermal energy + potential energy 
Thermal energy is kinetic energy due to translation, rotation and vibration, directly link to the 
temperature. 
 
Internal energy of an ideal gas: no potential energy, i.e. internal energy is equal to the thermal energy. 
Thermal energy is only due to the translational kinetic energies of all the gas molecules.  

€ 

E int = Ekin = N
m v2

2
=
3
2
NkT =

3
2
nRT  

where N is the number of molecules and n number of moles of the gas.  
 
Flow of energy 
Work (W): flow of energy out from the system in mechanics not related to temperature 
Heat (Q): flow of energy into the system due to the difference in temperature  
They can be transferred from one to the other. They do not define the state, i.e. not state variables.  
 
Sensible heat 
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Since they are mixed each other,  
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thus 
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Twater-3.5kg =
3 × 5.88
0.5 + 3

= 5.04  

i.e. the temperature of the water becomes   
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5.04C! . 
 
Evaporation and boiling 
At the boiling point, liquid changes to gas everywhere leading to the formation of gas bubble in the 
liquid. On the other hand, the change from liquid to gas occurs at the boundary surface between the 
two even below the boiling temperature, called evaporation: molecule with higher kinetic energy 
escaping from the liquid phase to the gas phase. Thus the average kinetic energy of the molecules 
remaining in the liquid decreases, thus the temperature of the liquid drops.  
 
Work 
When the volume changes, work is done. Consider a cylindrical container with a movable piston, 
which is gas tight but no friction with the wall. We change the volume in a quasistatical way, i.e. at 
any instance of the state change, the state in an equilibrium state, i.e. T and P are uniform in the gas. 
The gas pressure pushes the piston generating a force, 
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F = PA  where A is the area of the piston. The 
work done to move the piston by an infinitesimal amount dl, the work done is given by  
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dW = Fdl = PAdl = PdV   
where 

€ 

dV = Adl  is the infinitesimal change of the volume. Note that when the piston is pushed up, 
this is the work done by the gas. When the volume changes from 
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Va  to 
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Vb, the work done is given by 
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W = PdVVa

Vb∫  

 



Recap… Chapter 6, Energy, heat and work in TD

•What is the internal and thermal energy? What is the internal energy of ideal gas? 


• Internal energy Eint:  total amount of energy of all molecules, sum of thermal and 
potential energy 


•Thermal energy Etherm: kinetic energy due to translation, rotation and vibrations


•Eint of ideal gas (no potential energy) = Etherm


•State variables


•How can we describe the “flow of energy”?


•Heat: transfer of energy between objects due to T difference/change


•Work: transfer of mechanical energy independent of T (e.g. PV)


•NO state variables


•Conservation of energy: Delta Eint = Q - W (main focus of this lecture!!)
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Recap… Chapter 6, Heat capacity and calorimetry
•What is the relation between (sensible) heat and temperature?


•What is Calorimetry? 


•Measurement of changes in temperature to determine the amount of heat gained or 
lost by a system or the heat capacity of a material; “quantitative measurement of 
heat exchange.


•Are heat capacities of gases the same at const V or at const P?


•For gas, heat capacity different for processes at constant Volume or at constant 
Pressure:


•What are the heat capacities of ideal gas?
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 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  
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€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314
J

mol⋅ K
=1.99

cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜

⎞

⎠
⎟=
2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

3
2
R  

From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 

€ 

E = αx2 with a 
constant α. The average energy 

€ 

E  is then given by  

€ 

E =
αx2e−αx

2 kTdx
−∞

∞∫
e−αx

2 kTdx
−∞

∞∫
=
kT
2

 

If we extend the energy to be  

€ 

E = α i xi
2

i=1

n f

∑  

i.e. the energy is a sum of 

€ 

n f  components, all having a same functional form. The average energy is 
then becomes, 

  

€ 

E =

dx1−∞

∞∫ ! dxn f α i xi
2

i=1

n f

∑ e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫
=

dx1−∞

∞∫ ! dxn f α i xi
2e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫i=1

n f

∑  

Since all the but one integrals cancel between the numerators and denominators, we have 

€ 

E =
dxiα i xi

2e−α i xi
2 kT

−∞

∞∫
dxie

−α i xi
2 kT

−∞

∞∫i=1

n f

∑ =
n f
2
kT  

For a gas of N molecules, or n mole, it follows that  
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For a gas of N molecules, or n mole, it follows that  

• c is the heat capacity



Recap… Chapter 6, Heat capacity and calorimetry
•What is the relation between (sensible) heat and temperature?


•What is Calorimetry? 


•Measurement of changes in temperature to determine the amount of heat gained or 
lost by a system or the heat capacity of a material; “quantitative measurement of 
heat exchange.


•Are heat capacities of gases the same at const V or at const P?


•For gas, heat capacity different for processes at constant Volume or at constant 
Pressure:


•What are the heat capacities of ideal gas?
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 08:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (4th week) 
Energy, Heat, and Work 
Energy 
A unit of energy more related to thermal energy: 
1 calorie (cal) = energy needed to increase the temperature of 1 g of water by 1 Celsius degree 
1 cal = 4.186 J = 4.186 Nm 
 
Temperature T in Kelvin: a measure of the average kinetic energy of individual molecules  
Internal Energy 

€ 

E int: total energy contained by a thermodynamic system  
 = thermal energy + potential energy 
Thermal energy is kinetic energy due to translation, rotation and vibration, directly link to the 
temperature. 
 
Internal energy of an ideal gas: no potential energy, i.e. internal energy is equal to the thermal energy. 
Thermal energy is only due to the translational kinetic energies of all the gas molecules.  

€ 

E int = Ekin = N
m v2

2
=
3
2
NkT =

3
2
nRT  

where N is the number of molecules and n number of moles of the gas.  
 
Flow of energy 
Work (W): flow of energy out from the system in mechanics not related to temperature 
Heat (Q): flow of energy into the system due to the difference in temperature  
They can be transferred from one to the other. They do not define the state, i.e. not state variables.  
 
Sensible heat 
For Sensible heat, heat into the system, Q, changes the temperature of the system by ΔT: 

Q =m× c×ΔT  
where m is the mass of the material in the system and c is a quantity characteristic to the material 
called "specific heat". The unit of c is given by   

€ 

J kg⋅ C!( )  or   

€ 

kcal kg⋅ C!( ) . From the definition of 
the calorie, c for the water at   

€ 

15!C  and a constant pressure of 1 atm is   

€ 

1 kcal kg⋅ C! .  
Example: 
We consider a system of Iron container of 20 kg, holding 20 kg of water. The specific heat for the 
iron is   

€ 

0.11 kcal kg⋅ C!( ) . Now we calculate the heat needed to increase the temperature of the 
system from   

€ 

10!C  to   

€ 

90!C . For iron  

  

€ 

Qiron = m⋅ c iron ⋅ ΔT = 20kg⋅ 0.11kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =176kcal 
and for water  

  

€ 

Qwater = m⋅ cwater ⋅ ΔT = 20kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =1600kcal 
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 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  
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€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314
J

mol⋅ K
=1.99

cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜

⎞

⎠
⎟=
2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
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⎠ 
⎟ =

3
2
R  

From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 

€ 

E = αx2 with a 
constant α. The average energy 

€ 

E  is then given by  

€ 

E =
αx2e−αx

2 kTdx
−∞

∞∫
e−αx

2 kTdx
−∞

∞∫
=
kT
2

 

If we extend the energy to be  

€ 

E = α i xi
2

i=1

n f

∑  

i.e. the energy is a sum of 

€ 

n f  components, all having a same functional form. The average energy is 
then becomes, 

  

€ 

E =

dx1−∞

∞∫ ! dxn f α i xi
2

i=1

n f

∑ e
− α j x j

2
j∑ kT
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∞∫ ! dxn f e
− α j x j

2
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=
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2e
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− α j x j

2
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n f

∑  

Since all the but one integrals cancel between the numerators and denominators, we have 

€ 

E =
dxiα i xi

2e−α i xi
2 kT

−∞

∞∫
dxie

−α i xi
2 kT

−∞

∞∫i=1

n f

∑ =
n f
2
kT  
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For a gas of N molecules, or n mole, it follows that  
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Recap… Chapter 6, Heat capacity and calorimetry
•What is the relation between (sensible) heat and temperature?


•What is Calorimetry? 


•Measurement of changes in temperature to determine the amount of heat gained or 
lost by a system or the heat capacity of a material; “quantitative measurement of 
heat exchange.


•Are heat capacities of gases the same at const V or at const P?


•For gas, heat capacity different for processes at constant Volume or at constant 
Pressure:


•What are the heat capacities of ideal gas?
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 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  
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€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314
J

mol⋅ K
=1.99

cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜

⎞

⎠
⎟=
2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

3
2
R  

From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 

€ 

E = αx2 with a 
constant α. The average energy 

€ 

E  is then given by  

€ 

E =
αx2e−αx

2 kTdx
−∞

∞∫
e−αx

2 kTdx
−∞

∞∫
=
kT
2

 

If we extend the energy to be  

€ 

E = α i xi
2

i=1

n f

∑  

i.e. the energy is a sum of 

€ 

n f  components, all having a same functional form. The average energy is 
then becomes, 

  

€ 

E =

dx1−∞

∞∫ ! dxn f α i xi
2

i=1

n f

∑ e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫
=

dx1−∞

∞∫ ! dxn f α i xi
2e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫i=1

n f

∑  

Since all the but one integrals cancel between the numerators and denominators, we have 

€ 

E =
dxiα i xi

2e−α i xi
2 kT

−∞

∞∫
dxie

−α i xi
2 kT

−∞

∞∫i=1

n f

∑ =
n f
2
kT  

For a gas of N molecules, or n mole, it follows that  
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For a gas of N molecules, or n mole, it follows that  

• c is the heat capacity



Recap… Chapter 6, Heat capacity and calorimetry
•What is the relation between (sensible) heat and temperature?


•What is Calorimetry? 


•Measurement of changes in temperature to determine the amount of heat gained or 
lost by a system or the heat capacity of a material; “quantitative measurement of 
heat exchange.


•Are heat capacities of gases the same at const V or at const P?


•For gas, heat capacity different for processes at constant Volume or at constant 
Pressure:


•What are the heat capacities of ideal gas?
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 08:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (4th week) 
Energy, Heat, and Work 
Energy 
A unit of energy more related to thermal energy: 
1 calorie (cal) = energy needed to increase the temperature of 1 g of water by 1 Celsius degree 
1 cal = 4.186 J = 4.186 Nm 
 
Temperature T in Kelvin: a measure of the average kinetic energy of individual molecules  
Internal Energy 

€ 

E int: total energy contained by a thermodynamic system  
 = thermal energy + potential energy 
Thermal energy is kinetic energy due to translation, rotation and vibration, directly link to the 
temperature. 
 
Internal energy of an ideal gas: no potential energy, i.e. internal energy is equal to the thermal energy. 
Thermal energy is only due to the translational kinetic energies of all the gas molecules.  

€ 

E int = Ekin = N
m v2

2
=
3
2
NkT =

3
2
nRT  

where N is the number of molecules and n number of moles of the gas.  
 
Flow of energy 
Work (W): flow of energy out from the system in mechanics not related to temperature 
Heat (Q): flow of energy into the system due to the difference in temperature  
They can be transferred from one to the other. They do not define the state, i.e. not state variables.  
 
Sensible heat 
For Sensible heat, heat into the system, Q, changes the temperature of the system by ΔT: 

Q =m× c×ΔT  
where m is the mass of the material in the system and c is a quantity characteristic to the material 
called "specific heat". The unit of c is given by   

€ 

J kg⋅ C!( )  or   

€ 

kcal kg⋅ C!( ) . From the definition of 
the calorie, c for the water at   

€ 

15!C  and a constant pressure of 1 atm is   

€ 

1 kcal kg⋅ C! .  
Example: 
We consider a system of Iron container of 20 kg, holding 20 kg of water. The specific heat for the 
iron is   

€ 

0.11 kcal kg⋅ C!( ) . Now we calculate the heat needed to increase the temperature of the 
system from   

€ 

10!C  to   

€ 

90!C . For iron  

  

€ 

Qiron = m⋅ c iron ⋅ ΔT = 20kg⋅ 0.11kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =176kcal 
and for water  

  

€ 

Qwater = m⋅ cwater ⋅ ΔT = 20kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =1600kcal 
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 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  

 2 

 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  

 3 

€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314
J

mol⋅ K
=1.99

cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜

⎞

⎠
⎟=
2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

3
2
R  

From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 
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For a gas of N molecules, or n mole, it follows that  

• c is the heat capacity



Recap… Chapter 6, Heat capacity and calorimetry
•What is the relation between (sensible) heat and temperature?


•What is Calorimetry? 


•Measurement of changes in temperature to determine the amount of heat gained or 
lost by a system or the heat capacity of a material; “quantitative measurement of 
heat exchange.


•Are heat capacities of gases the same at const V or at const P?


•For gas, heat capacity different for processes at constant Volume or at constant 
Pressure:


•What are the heat capacities of ideal gas?
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 08:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (4th week) 
Energy, Heat, and Work 
Energy 
A unit of energy more related to thermal energy: 
1 calorie (cal) = energy needed to increase the temperature of 1 g of water by 1 Celsius degree 
1 cal = 4.186 J = 4.186 Nm 
 
Temperature T in Kelvin: a measure of the average kinetic energy of individual molecules  
Internal Energy 

€ 

E int: total energy contained by a thermodynamic system  
 = thermal energy + potential energy 
Thermal energy is kinetic energy due to translation, rotation and vibration, directly link to the 
temperature. 
 
Internal energy of an ideal gas: no potential energy, i.e. internal energy is equal to the thermal energy. 
Thermal energy is only due to the translational kinetic energies of all the gas molecules.  

€ 

E int = Ekin = N
m v2

2
=
3
2
NkT =

3
2
nRT  

where N is the number of molecules and n number of moles of the gas.  
 
Flow of energy 
Work (W): flow of energy out from the system in mechanics not related to temperature 
Heat (Q): flow of energy into the system due to the difference in temperature  
They can be transferred from one to the other. They do not define the state, i.e. not state variables.  
 
Sensible heat 
For Sensible heat, heat into the system, Q, changes the temperature of the system by ΔT: 

Q =m× c×ΔT  
where m is the mass of the material in the system and c is a quantity characteristic to the material 
called "specific heat". The unit of c is given by   

€ 

J kg⋅ C!( )  or   

€ 

kcal kg⋅ C!( ) . From the definition of 
the calorie, c for the water at   

€ 

15!C  and a constant pressure of 1 atm is   

€ 

1 kcal kg⋅ C! .  
Example: 
We consider a system of Iron container of 20 kg, holding 20 kg of water. The specific heat for the 
iron is   

€ 

0.11 kcal kg⋅ C!( ) . Now we calculate the heat needed to increase the temperature of the 
system from   

€ 

10!C  to   

€ 

90!C . For iron  

  

€ 

Qiron = m⋅ c iron ⋅ ΔT = 20kg⋅ 0.11kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =176kcal 
and for water  

  

€ 

Qwater = m⋅ cwater ⋅ ΔT = 20kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =1600kcal 
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 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  
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€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314
J

mol⋅ K
=1.99

cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜
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2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 
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CV =
1
n
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From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 

€ 

E = αx2 with a 
constant α. The average energy 

€ 

E  is then given by  

€ 

E =
αx2e−αx
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If we extend the energy to be  

€ 

E = α i xi
2

i=1

n f

∑  

i.e. the energy is a sum of 

€ 

n f  components, all having a same functional form. The average energy is 
then becomes, 
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Since all the but one integrals cancel between the numerators and denominators, we have 
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• c is the heat capacity



• If we consider non-ideal gas, which additional form of motion we should consider? 


• Rotational and vibrational motions


•How can we elegantly account for changes of heat capacities for non-ideal gas?


• Equipartion theorem: the energy of a molecule is shared equally between 
different degrees of freedom, each which carries on average an energy of kT/2.


• Thus, the heat capacities (at const V, CV) for non-ideal gas with monotomic or 
diatomic molecules are:
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 Monatomic molecule: 3-translational kinetic energies, 

€ 

n f = 3 
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• If we consider non-ideal gas, which additional form of motion we should consider? 


• Rotational and vibrational motions


•How can we elegantly account for changes of heat capacities for non-ideal gas?


• Equipartion theorem: the energy of a molecule is shared equally between 
different degrees of freedom, each which carries on average an energy of kT/2.


• Thus, the heat capacities (at const V, CV) for non-ideal gas with monotomic or 
diatomic molecules are:
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Recap… Chapter 6, Latent heat and phase transitions
•Which forms of heat do we have in TD? 


•Two forms of heat: sensible heat (section 6.1-6.3) and latent heat


•What is latent heat? 


•Heat needed for rebuilding the molecular structure during a phase transition, 
NO change in temperature

 3 

When you cross the solid black lines by changing the pressure or/and temperature, there is a phase 
transition, usually involving latent heat. At the triple point, the all three phases exist simultaneously. 
Above critical point, vapour can change to water or water to vapour smoothly without latent heat.  
 
Latent Heat 
Latent heat is heat that does not change the temperature. When the phase of matter changes, e.g. from 
solid to liquid, or from liquid to gas, heat to the system is needed. However, the temperature of the 
system remains constant, i.e. all the energy is used to transform the molecular structure and not to 
increase the kinetic energy of molecules: 
Heat of fusion (melting) 

€ 

LF : heat needed to change 1 kg of material from the solid to liquid phase.  
Heat of vaporization (boiling) 

€ 

LV: heat needed to change 1 kg of material from the liquid to gas 
phase.  
They are called latent heat. The total heat needed, Q, to melt m kg of material is then 

€ 

Q = mLF  
On the other hand, in order to solidify m kg of liquid, 

€ 

Q = mLF , must be taken out from the system at 
the melting temperature.  
Example: 

 
We consider a system of 0.5 kg of ice at   

€ 

−10!C  put into 3 kg of water at   

€ 

20!C . Specific heat of ice is 

  

€ 

0.5 kcal kg⋅ C!( )  and heat of fusion, 

€ 

79.7kcal kg . For the ice to melt, first the temperature must 
raise to   

€ 

0!C  requiring heat of  

  

€ 

Qice = m⋅ c ice ⋅ ΔT = 0.5kg⋅ 0.5kcal⋅ kg⋅ C!( )−1⋅ (0 +10)C! = 2.5kcal 
plus latent heat of  

€ 

Qmelting = mLF = 0.5kg⋅ 79.7kcal⋅ kg−1 = 39.85kcal 
thus the total heat needed is  

€ 

Qtotal =Qice +Qmelting = 42.35kcal 
which has to come from the 3 kg of water at   

€ 

20!C . This will cool down the temperature of the water 
to 

€ 

Twater-3kg , which can be derived from  
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−Qtotal = m⋅ cwater ⋅ ΔT = 3kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (Twater-3kg − 20)C! = −42.35kcal 
leading to  

  

€ 

Twater-3kgC
! = −

42.35kcal
3kcal⋅ C!−1

+ 20C! = 5.88C!  

Now we are putting 3kg of water at   

€ 

5.88C!  and 0.5 kg of water at   

€ 

0!C  together. If we denote the 
final temperature of 3.5 kg of water to be 

€ 

Twater-3.5kg , the heat needed for the 0.5 kg of water is  
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Q0.5kg = m⋅ cwater ⋅ ΔT = 0.5kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (Twater-3.5kg − 0)C!  
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The total heat required is thus 

€ 

Qtotal =Qiron +Qwater =1776kcal 
When the system cools down from   

€ 

90!C  to   

€ 

10!C , the heat out from the system is 1776kcal. Note that 
water is a good heat reservoir being a material with one of the highest value of c.  
 
Open, Closed and Isolated System 
Closed system: can exchange energy but not matter with the surroundings 
Isolated system: can exchange neither energy nor matter with the surroundings  
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As discussed in the first week, there are three phases of matter: solid, liquid and gas. Table below 
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Figure below is called “phase diagram” where three phases are indicated as a function of pressure 
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•What is a phase diagram in TD, and where 
comes latent heat in? 
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function of Pressure and Temperature


•What are the main characteristics of the phase 
diagram of water?


•Unusual behaviour of water, Triple point, 
critical point
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•Which forms of heat do we have in TD? 


•Two forms of heat: sensible heat (section 6.1-6.3) and latent heat


•What is latent heat? 


•Heat needed for rebuilding the molecular structure during a phase transition, 
NO change in temperature

 3 

When you cross the solid black lines by changing the pressure or/and temperature, there is a phase 
transition, usually involving latent heat. At the triple point, the all three phases exist simultaneously. 
Above critical point, vapour can change to water or water to vapour smoothly without latent heat.  
 
Latent Heat 
Latent heat is heat that does not change the temperature. When the phase of matter changes, e.g. from 
solid to liquid, or from liquid to gas, heat to the system is needed. However, the temperature of the 
system remains constant, i.e. all the energy is used to transform the molecular structure and not to 
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Heat of fusion (melting) 
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LF : heat needed to change 1 kg of material from the solid to liquid phase.  
Heat of vaporization (boiling) 
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LV: heat needed to change 1 kg of material from the liquid to gas 
phase.  
They are called latent heat. The total heat needed, Q, to melt m kg of material is then 
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On the other hand, in order to solidify m kg of liquid, 
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Q = mLF , must be taken out from the system at 
the melting temperature.  
Example: 
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•What is a phase diagram in TD, and where 
comes latent heat in? 


•Three phases of a substance as a 
function of Pressure and Temperature


•What are the main characteristics of the phase 
diagram of water?


•Unusual behaviour of water, Triple point, 
critical point



•What is the first law of Thermodynamics of a closed system? 


•Energy conservation: change in internal energy is the heat added to the system 
minus the work done BY system (W=P𝚫V):


•How is first law modified for different thermodynamic systems (other than closed)?


• isolated: no heat and work transfer, Q = 0, W = 0 —> 𝚫Eint = 0


• adiabatic: Q = 0, 𝚫Eint = - W


•open: matter exchange possible described by chemical work C: 𝚫Eint = Q - W - C


•Which thermal processes for gas (to change its state) do you know?

Recap… Chapter 7, First law of TD
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
Thermodynamic (5th week) 
Thermodynamical State 
A thermodynamic state is described by a set of state variables. Examples of state variables are, P, V, 
T, number of moles,  etc. They are uniquely defined, independent of how the system arrived at 
that particular state. As seen later, heat or work are not state variables since they depend on how the 
system reached the particular state. Once a sufficient numbers of variables have bees specified, all 
other variables are uniquely determined. The number of variables needed to specify the system 
depends on the system.  

Example: System of an ideal gas 
The gas law for ideal gas  shows that a set of three variables out of four, i.e. P, V, T, and N 
determines the system.  
 
The First Low of Thermodynamics 
Extending the concept of the energy conservation to the thermodynamical system. In a closed system, 
we have  

ΔEint =Q−W  

€ 

ΔE int; Change of the internal energy, Q: heat into the system, W: work by the system 
In the isolated system, no energy transfer can occur, i.e. Q = 0 and W = 0, hence 

€ 

ΔE int = 0. 
 

Thermal Processes 
There are the following four thermal processes for gas to change its state: 
 Isothermal (ΔT = 0): while the state changes, the temperature is kept constant.  
 Adiabatic (Q = 0): process with no heat, i.e. thermally isolated system or a very fast process.  
 Isobaric (ΔP = 0): while the state changes, the pressure is kept constant. 
 Isovolumetric (ΔV = 0): while the state changes, the volume is kept constant. 
 
Molecular Specific Heat 
Recall the specific heat, c, for solid and liquid: 

€ 

Q = mcΔT  
where the heat Q is in cal,  m is the mass in g and ΔT the temperature difference in degree Celsius. 
For the gas, two more variables, volume (V) and pressure (P), are needed in consideration. Therefore, 
two kinds of specific heats are introduced: 

€ 

cV : specific heat at constant volume 

€ 

cP : specific heat at a constant pressure.  
and they are fairly different.  
 

€ 

E int

€ 

PV = NkT
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•What is the first law of Thermodynamics of a closed system? 


•Energy conservation: change in internal energy is the heat added to the system 
minus the work done BY system (W=P𝚫V):


•How is first law modified for different thermodynamic systems (other than closed)?


• isolated: no heat and work transfer, Q = 0, W = 0 —> 𝚫Eint = 0
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•How can we compute the internal energy for isochoric/isovolumetric 𝚫V = 0 processes? 


•How for isobaric 𝚫P = 0 processes?


For ideal gas: ΔEint = nCVΔT 


Note that here any change from one thermal state to another can be made as 
combinations of isochoric and isobaric processes, with ΔEint = nCVΔT 


•How for isothermal 𝚫T = 0 processes?

•ΔEint = 0 (if ideal gas) —> Q = W = PΔV 


•How for adiabatic Q = 0 processes?

•  ΔEint = - W
•For ideal gas: Q = PΔV + nCV ΔT —> VγP= const. and T Vγ-1 = const.

Recap… Chapter 7, The first law in different thermal processes
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Measured values show that 1) some of the degrees of freedom are not "active", and 2) decreases with 
temperature to
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nf = 5 then to 
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nf = 3 for different gas molecules, i.e. gasses behave like a monatomic 
molecule at a very low temperature. These observations are related to the foundation of quantum 
theory.  
 
Change of internal energy for ideal gas 
For isovolumetric process, we have Δ! = 0, thus 

ΔEint =QV = nCVΔT  
and for isobaric process 

ΔEint = nCPΔT − PΔV  
For ideal gas, we have 
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CP −CV = R  and ΔV = nRΔT P , thus  
ΔEint = n CV + R( )ΔT − nRΔT = nCVΔT  

i.e. the change of internal energy for a temperature change of ΔT is given by  
ΔEint = nCVΔT  

for both isovolumetric and isobaric processes. For ideal gas, any change in two thermal states can 
be made as combinations of Isovolumetric and isobaric processes, the change of internal energy for a 
temperature change of ΔT for any processes is given by  

ΔEint = nCVΔT . 
Adiabatic Process 
As mentioned, for a defined gas, among three state variables, T, V and P, there are only two 
independent variables. Let us use T and V, leading to   
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The first law of thermodynamics gives  
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For ideal gas, recalling that the internal energy depends only on the temperature, i.e. 
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∂E int ∂V( )T = 0 
and the definition of 
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CV , it follows that  
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Q = PΔV + nCVΔT . 

In an adiabatic process, no heat is allowed. This can happen when the system is thermally well 
isolated or the process happens very fast. Let us consider a very slow (quasistatic) process where the 
state of ideal gas is adiabatically changed from A:

€ 

Va,  Pa,  T0( )  to C:

€ 

Vb,  Pc,  Tc( ) , i.e. C has the same 
volume as B.  Since there is no heat involved in the process, Q = 0, thus  

€ 

PΔV + nCVΔT = 0 . 
Using 

€ 

PV = nRT  for the ideal gas, we obtain 
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•How can we compute the internal energy for isochoric/isovolumetric 𝚫V = 0 processes? 


•How for isobaric 𝚫P = 0 processes?


For ideal gas: ΔEint = nCVΔT 


Note that here any change from one thermal state to another can be made as 
combinations of isochoric and isobaric processes, with ΔEint = nCVΔT 


•How for isothermal 𝚫T = 0 processes?

•ΔEint = 0 (if ideal gas) —> Q = W = PΔV 


•How for adiabatic Q = 0 processes?

•  ΔEint = - W
•For ideal gas: Q = PΔV + nCV ΔT —> VγP= const. and T Vγ-1 = const.

Recap… Chapter 7, The first law in different thermal processes
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Recap Chapter 8… Reversible and irreversible processes

•What is the definition of reversible and irreversible processes?


•Any process, that can be reversed by changing signs of Q and W, is 
reversible; Entropy production = 0.


•Any process, that cannot be reversed by changing signs of Q and W is 
irreversible. “Arrow of time comes in”; Entropy production > 0
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (6th week) 
Entropy and the second and third Laws of Thermodynamics 
Reversible and irreversible process 
Consider an isothermal expansion of an n-mol ideal gas at 

€ 

T = T0  changing its state from 

€ 

A Va,  Pa,  T0( ) to 

€ 

B Vb,  Pb,  T0( )  through a quasi-static path (see Lecture Note Thermodynamics 5th 
week). This process follows the line given by 

€ 

PV = nRT0  on the V-P plane. Since there is no 
temperature change, 

€ 

ΔE int = 0 and from the first law of thermodynamics, Q = W where work W is 
given by  

€ 

WA→B = PdVA
B∫ = nRT0

dV
VVa

Va∫ = nRT0 ln
Vb
Va

 

 thus 

€ 

Q
A→B

= nRT0 ln
Vb
Va

. 

Once the system is at the state B, we can make the system to follow the same path back to A by 
applying 

€ 

−QA→B  and 

€ 

−WA→B, just reversing the sign. Any process that can be reversed by changing 
the sign of Q and W is called reversible.   
 Now consider a process where a thermally isolated container with a volume 

€ 

Vb is divided into 
two by a tight thermally isolating wall. One section is filled with an n-mol ideal gas at 

€ 

A Va,  Pa,  T0( ) 
and the other vacuum. Now we remove the wall and let the gas to expand into the whole volume. 
Since the container is thermally isolated, Q = 0, since gas expands without moving anything, W = 0. 
The first law of thermodynamics leads to 

€ 

ΔE int = 0. The final state is 

€ 

B Vb,  Pb,  T0( ) . Since the 
internal energy depends only on temperature, no change of temperature in this process. The process 
cannot be shown as a quasi-static path on the V-P plane. Clearly, this process cannot be reversed by 
simply changing the sign of Q and W. Any process that cannot be reversed by changing the sign of Q 
and W is called irreversible.    
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•What is a thermal machine?


•This is a TD system if it performs a heat transfer 
between two thermal baths 


•allowing for mechanical work being done by 
system on the environment and vice versa


•by means of a machine that periodically passes 
though the same state (cycle of distinct 
processes)


•What is an equivalent formulation of 2nd law of TD? 

•Perpetual motion machine of the 2nd kind does not 
exist (as Entropy change would be negative)

Recap Chapter 9… — Thermal machines
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•What is the set up and efficiency of a thermal 
machine? 


•Heat taken from hot reservoir, Work 
conducted on environment, heat given 
back to cold reservoir


•Efficiency of heat engine smaller than 1:

Recap Chapter 9 — Thermal machines

•Best possible engine, equality for 
reversible processes only


•Note that in nature most (macroscopic 
processes) are irreversible (friction) —> 
reducing epsilon
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•Entropy S is a state variable (independent of the path of the process), important for 
distinguishing between reversible and irreversible processes, quantify for “disorder”


•dSsystem =  dSenv + dSprod;   

•dSenv: change of entropy due to heat exchange with environment

•dSprod: entropy production due to dissipation within the system


•Entropy due to heat exchange with environment


•dSenv in isothermal processes


•dSenv in isochoric processes


•dSenv in isobaric processes


•dSenv in adiabatic processes is zero (as Q is zero)

Recap Chapter 8…  What is Entropy?
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Entropy 
For a reversible process, entropy changes of a system, ΔS, for a change of its state from A to B with 
heat Q and at a constant temperature T, is given by  

€ 

ΔS =
Q
T

 

where the temperature is in Kelvin. If the temperature of the system is not constant, ΔS is given by 

€ 

ΔS = dSA
B∫ =

˜ d Q
TA

B∫  

where the integral follows a quasi-static path from A to B. Note that 

€ 

Q T  of infinitesimally small 
step on the path is given by 

€ 

˜ d Q T . It can be shown that ΔS is independent of the path, unlike the heat. 
Thus the entropy, S, is a state variable such as volume and temperature and ΔS = S(B) − S(A). 
 We demonstrate the fact that ΔS does not depend on the path, by calculating ΔS explicitly for a 
change of state A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  for an n-mol ideal gas in two different reversible 
paths. As demonstrated above, the state from A to B can be achieved through isothermal expansion, 
where heat is given by   

Q = nRT0 ln
Vb
Va

. 

Since the temperature does not change in the process, the entropy change is then given by  

ΔSab =
Q
T0
= nR lnVb

Va
. 

We then consider reaching B in two steps, first decreasing the pressure under constant volume to 
reach D Va,  Pb,  Td( ) , followed by increasing the volume under constant pressure (see again Lecture 
Note Thermodynamics 5th week). For the heat, we have: 

A→D Qad = nCVdT  and D→B Qdb = nCPdT  
which lead to  

ΔSad = nCV
dT
T

= nCV ln Td

T0
T0

Td∫  for A→D and ΔSdb = nCP
dT
T

= n CV + R( ) lnT0

Td
Td

T0∫  for D→B . 

The total entropy change is given by  

Δ ʹSab = ΔSad +ΔSdb = nCV ln
Td
T0
+n CV + R( ) lnT0

Td
=nR lnT0

Td
 

Using the gas low, PV=nRT, we obtain,  
T0
Td
=
VbPb
VaPb

 

which follows that  
T0
Td
=
Vb
Va

 

showing that the two different paths give same ΔS. Since Va <Vb , we have ΔS > 0. 
 Considered paths can be indeed reversed, i.e. C→A, by changing the sign of Q and W, with 
negative entropy −ΔS. Therefore, entropy change for a loop such as A→B→C→A,  

€ 

ΔSab + ΔSbc + ΔSca =
˜ d Q
T∫ = 0  

i.e. it is always 0. We conclude that ΔS does not depends on the path, thus S is a state variable.  
 For irreversible process, it turns out  
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distinguishing between reversible and irreversible processes, quantify for “disorder”


•dSsystem =  dSenv + dSprod;   

•dSenv: change of entropy due to heat exchange with environment

•dSprod: entropy production due to dissipation within the system
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•dSenv in adiabatic processes is zero (as Q is zero)
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•How does entropy of a system due to heat exchange with environment and due to 
production differ for reversible and irreversible processes?


•Entropy due to heat exchange with environment


•For the same total change in entropy, in reversible/irreversible dSenv 
is


•For irreversible processes, contribution from entropy production, 
irreversibly increasing the internal energy


•Entropy production due to dissipation within a system


•Reversible: dSprod = 0


• Irreversible: dSprod > 0 (e.g. free expansion of gas at T=const and 
Q=0)

Recap Chapter 8 … Entropy
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Therefore, we can write, 
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ΔS ≥
˜ d Q
TA
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where the equal sign holds only for reversible processes, i.e. entropy change is given by  

ΔS =
!dQ
TA

B
∫  

only for the reversible process. If we consider a thermally isolated system, no heat for any process, 
i.e. 

€ 

ΔS ≥ 0 .  
 
Entropy Second and third laws of thermodynamics 
The second law of thermodynamic is: In any process in which a thermally isolated system goes from 
one state to another state, the entropy cannot be decreased; i.e. 

€ 

ΔS ≥ 0 . 
The third law of thermodynamic is: The entropy of a system converges to a constant value 

€ 

S0 = 0 for 

€ 

T →0 independent of all the other properties for the particular system.  
 
Entropy and the first law of thermodynamic 
For reversible processes with a fixed temperature, T, heat, Q, can be obtained from the change of the 
entropy, ΔS as 

€ 

Q = ΔST  or for an infinitesimally small path, 

€ 

˜ d Q = TdS . Then, The first law of 
thermodynamics can be written as  

dEint =Q −W =TdS − PdV  
where all the terms consist of state variables, not depending on the path. Therefore, it is valid even 
for irreversible process. One may summarise as: 
 

€ 

˜ d Q = TdS   only for reversible case 
 

€ 

˜ d W = PdV   only for reversible case 
 

€ 

dE int = ˜ d Q − ˜ d W  always valid  
 

€ 

dE int = TdS − PdV  always valid 
For irreversible process, we have 

€ 

TdS ≥ ˜ d Q, thus 
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PdV ≤ ˜ d W .  
 
Statistical interpretation of Entropy 
Once we obtain, 

€ 

dE int = TdS − PdV , temperature, T, can be given by  
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1
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=
1

∂E int ∂S( )V
=

∂S
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 While deriving the Boltzmann constant during the Thermodynamics 3 lecture, we encounter an 
expression: 

€ 

dlnΩ E( )
dE

=
1
kT
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•How can we connect entropy to the first law of TD?


•Entropy and the first law of TD:  dEint = dQ − dW = TdS − PdV 


•Only for reversible processes: dQ = TdS and dW = PdV


•What is the second law of Thermodynamics?


•Each thermodynamic system has a state variable called entropy S. The 
entropy of thermally isolated systems (Q=0) cannot decrease over time: ΔS 
≥ 0 —> Entropy is not conserved for most natural processes (unless they 
are fully reversible)


•What is the third law of Thermodynamics? 


•The entropy of a system converges to a constant value S0 = 0 for T →0 
independent of all the other properties for the particular system. 

Recap Chapter 8 … Entropy and the three laws of Thermodynamics
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•How can we interpret entropy from a microscopic/statistical point of view?


•The entropy S of a particular macro state of a TD system is related to the number of 
microstates on the particle level: 


•What are then the implications of the second law of TD? 


•An increasing entropy ΔS ≥ 0 of a thermally isolated system (Q=0) implies that a 
system evolves from more order (lower Ω) to equal or less order (equal or higher Ω) 
with time (equality for reversible process only).


•What are the implications for the third law of TD?


• If S —> 0 for T—>0, it implies only one micro state of a system, “state of perfect/
maximum order”


•Entropy change for irreversible Joule free expansion in an thermally isolated system can be 
computed by a reversible, isothermal expansion: 

Recap Chapter 8 Statistical interpretation of entropy

 4 

where, k is the Boltzmann constant, and Ω(E) is the number of states with energy E. as an thermal 
equilibrium condition. This leads to  

€ 

k
dlnΩ E int( )
dE int

=
∂S
∂E int

⎛ 

⎝ 
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⎞ 

⎠ 
⎟ 
V

 

By integrating the both sides, we identify  

€ 

S = k lnΩ 
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is 
given by the formula, 

€ 

S = k lnΩ, where Ω is the number of microstates associated to the particular 
macrostate.  At 

€ 

T = 0, there is only one state. Evolution of a thermal system is in the direction from 
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.    

 
 
Entropy of free expansion a la statistical mechanics  
We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
placed in a container with volume 

€ 

Va . In that volume, there are m possible states that the gas 
molecule can take. The number of possible configuration taken by the N molecules, Ω, is then given 
by 

€ 

Ω=mCN =
m!

N! m − N( )!
 

and entropy by    

€ 

S = k lnΩ = k ln m!
N! m − N( )!

 

Since we are considering a macroscopic system, both m and N are large, where 

€ 

lnn!≈ n lnn − n  
(Starling's approximation) can be used. This leads to  

€ 

S = k ln m!
N! m − N( )!

≈ k m lnm − N lnN − m − N( ) ln m − N( )[ ] .  

Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and 
the following approximation holds: 

€ 

m lnm − N lnN − m − N( ) ln m − N( ) = m ln m
m − N

− N ln N
m − N

≈ m ln 1+
N
m

⎛ 

⎝ 
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⎠ 
⎟ − N ln

N
m
1+

N
m

⎛ 

⎝ 
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≈ N − N ln N
m
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and 

€ 

S ≈ k N − N ln N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

When the volume of the container is increased to 

€ 

Vb , the number of possible states in the container 
also increases from m to 

€ 

xm , where 

€ 

x =V2 V1 . Entropy is then given by 

€ 

ʹ S ≈ k N − N ln N
xm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and entropy change  

€ 

ΔS = ʹ S − S ≈ kN ln x  
Converting it to the mole number, n, and universal gas constant R, it follows that  

 

€ 

ΔS ≈ nR lnVb
Va

 

in agreement with the thermodynamics calculation.  
 
Special demonstration: Entropy of mixing 
A thermally isolated container with a volume V is split into two, 

€ 

V1 = xV and 

€ 

V2 = 1− x( )V  where 

€ 

0 ≤ x ≤1, by a thermally isolated wall. They are filled with two different ideal gasses of 

€ 

n1 = xn -mol 
and 

€ 

n2 = 1− x( )n-mole, respectively. Both gasses have a same pressure, 

€ 

P1 = P2 ≡ P , and a same 
temperature, 

€ 

T1 = T2 ≡ T . Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to 
volume-1.  
Since there is no temperature difference between the two regions, the temperature remains constant in 
this process. The two gasses do not provide any work either, since they have nothing to move when 
they expand. Therefore, this process can be dealt as two gasses making free expansion independently. 
Then the entropy changes of the two gasses are given by   

€ 

ΔS1 = xnR ln V
xV

 and ΔS2 = 1− x( )nR ln V
1− x( )V

 

and the total entropy change 

€ 

ΔS = ΔS1 + ΔS2 = xnR ln V
xV

+ 1− x( )nR ln V
1− x( )V

= −nR x ln x + 1− x( ) ln 1− x( )[ ] 

 
As seen from the figure above, 

€ 

ΔS ≥ 0 , where ΔS = 0 at x = 0 and = 1, i.e. with one gas and no 
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for 
two different ideal gasses. Since mixing two different gasses is an irreversible process.  
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•How can we interpret entropy from a microscopic/statistical point of view?


•The entropy S of a particular macro state of a TD system is related to the number of 
microstates on the particle level: 


•What are then the implications of the second law of TD? 


•An increasing entropy ΔS ≥ 0 of a thermally isolated system (Q=0) implies that a 
system evolves from more order (lower Ω) to equal or less order (equal or higher Ω) 
with time (equality for reversible process only).


•What are the implications for the third law of TD?


• If S —> 0 for T—>0, it implies only one micro state of a system, “state of perfect/
maximum order”


•Entropy change for irreversible Joule free expansion in an thermally isolated system can be 
computed by a reversible, isothermal expansion: 

Recap Chapter 8 Statistical interpretation of entropy
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where, k is the Boltzmann constant, and Ω(E) is the number of states with energy E. as an thermal 
equilibrium condition. This leads to  
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By integrating the both sides, we identify  
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S = k lnΩ 
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is 
given by the formula, 

€ 

S = k lnΩ, where Ω is the number of microstates associated to the particular 
macrostate.  At 

€ 

T = 0, there is only one state. Evolution of a thermal system is in the direction from 
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.    

 
 
Entropy of free expansion a la statistical mechanics  
We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
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Converting it to the mole number, n, and universal gas constant R, it follows that  
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in agreement with the thermodynamics calculation.  
 
Special demonstration: Entropy of mixing 
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and 
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T1 = T2 ≡ T . Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to 
volume-1.  
Since there is no temperature difference between the two regions, the temperature remains constant in 
this process. The two gasses do not provide any work either, since they have nothing to move when 
they expand. Therefore, this process can be dealt as two gasses making free expansion independently. 
Then the entropy changes of the two gasses are given by   
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As seen from the figure above, 

€ 

ΔS ≥ 0 , where ΔS = 0 at x = 0 and = 1, i.e. with one gas and no 
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for 
two different ideal gasses. Since mixing two different gasses is an irreversible process.  

0

0.4

0.8

0 0.5 1

Entropy diffeence for mixing

Δ
S 

fo
r m

ix
in

g 
in

 a
rb

itr
ar

y 
un

it

x



•How can we interpret entropy from a microscopic/statistical point of view?


•The entropy S of a particular macro state of a TD system is related to the number of 
microstates on the particle level: 


•What are then the implications of the second law of TD? 


•An increasing entropy ΔS ≥ 0 of a thermally isolated system (Q=0) implies that a 
system evolves from more order (lower Ω) to equal or less order (equal or higher Ω) 
with time (equality for reversible process only).


•What are the implications for the third law of TD?


• If S —> 0 for T—>0, it implies only one micro state of a system, “state of perfect/
maximum order”


•Entropy change for irreversible Joule free expansion in an thermally isolated system can be 
computed by a reversible, isothermal expansion: 

Recap Chapter 8 Statistical interpretation of entropy

 4 

where, k is the Boltzmann constant, and Ω(E) is the number of states with energy E. as an thermal 
equilibrium condition. This leads to  

€ 

k
dlnΩ E int( )
dE int

=
∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

By integrating the both sides, we identify  

€ 

S = k lnΩ 
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is 
given by the formula, 

€ 

S = k lnΩ, where Ω is the number of microstates associated to the particular 
macrostate.  At 

€ 

T = 0, there is only one state. Evolution of a thermal system is in the direction from 
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.    

 
 
Entropy of free expansion a la statistical mechanics  
We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
placed in a container with volume 

€ 

Va . In that volume, there are m possible states that the gas 
molecule can take. The number of possible configuration taken by the N molecules, Ω, is then given 
by 

€ 

Ω=mCN =
m!

N! m − N( )!
 

and entropy by    

€ 

S = k lnΩ = k ln m!
N! m − N( )!

 

Since we are considering a macroscopic system, both m and N are large, where 

€ 

lnn!≈ n lnn − n  
(Starling's approximation) can be used. This leads to  

€ 

S = k ln m!
N! m − N( )!

≈ k m lnm − N lnN − m − N( ) ln m − N( )[ ] .  

Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and 
the following approximation holds: 

€ 

m lnm − N lnN − m − N( ) ln m − N( ) = m ln m
m − N

− N ln N
m − N

≈ m ln 1+
N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − N ln

N
m
1+

N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

≈ N − N ln N
m

 

 5 

and 

€ 

S ≈ k N − N ln N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

When the volume of the container is increased to 

€ 

Vb , the number of possible states in the container 
also increases from m to 

€ 

xm , where 

€ 

x =V2 V1 . Entropy is then given by 

€ 

ʹ S ≈ k N − N ln N
xm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and entropy change  

€ 

ΔS = ʹ S − S ≈ kN ln x  
Converting it to the mole number, n, and universal gas constant R, it follows that  

 

€ 

ΔS ≈ nR lnVb
Va

 

in agreement with the thermodynamics calculation.  
 
Special demonstration: Entropy of mixing 
A thermally isolated container with a volume V is split into two, 

€ 

V1 = xV and 

€ 

V2 = 1− x( )V  where 

€ 

0 ≤ x ≤1, by a thermally isolated wall. They are filled with two different ideal gasses of 

€ 

n1 = xn -mol 
and 

€ 

n2 = 1− x( )n-mole, respectively. Both gasses have a same pressure, 

€ 

P1 = P2 ≡ P , and a same 
temperature, 

€ 

T1 = T2 ≡ T . Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to 
volume-1.  
Since there is no temperature difference between the two regions, the temperature remains constant in 
this process. The two gasses do not provide any work either, since they have nothing to move when 
they expand. Therefore, this process can be dealt as two gasses making free expansion independently. 
Then the entropy changes of the two gasses are given by   

€ 

ΔS1 = xnR ln V
xV

 and ΔS2 = 1− x( )nR ln V
1− x( )V

 

and the total entropy change 

€ 

ΔS = ΔS1 + ΔS2 = xnR ln V
xV

+ 1− x( )nR ln V
1− x( )V

= −nR x ln x + 1− x( ) ln 1− x( )[ ] 

 
As seen from the figure above, 

€ 

ΔS ≥ 0 , where ΔS = 0 at x = 0 and = 1, i.e. with one gas and no 
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for 
two different ideal gasses. Since mixing two different gasses is an irreversible process.  

0

0.4

0.8

0 0.5 1

Entropy diffeence for mixing

Δ
S 

fo
r m

ix
in

g 
in

 a
rb

itr
ar

y 
un

it

x



•What is a thermal machine?


•This is a TD system if it performs a heat transfer 
between two thermal baths 


•allowing for mechanical work being done by 
system on the environment and vice versa


•by means of a machine that periodically passes 
though the same state (cycle of distinct 
processes)


•What is an equivalent formulation of 2nd law of TD? 

•Perpetual motion machine of the 2nd kind does not 
exist (as Entropy change would be negative)

Recap Chapter 9… — Thermal machines
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•What is the set up and efficiency of a thermal 
machine? 


•Heat taken from hot reservoir, Work 
conducted on environment, heat given 
back to cold reservoir


•Efficiency of heat engine smaller than 1:

Recap Chapter 9 — Thermal machines

•Best possible engine, equality for 
reversible processes only


•Note that in nature most (macroscopic 
processes) are irreversible (friction) —> 
reducing epsilon



•What is the set up and efficiency of a thermal 
machine? 


•Heat taken from hot reservoir, Work 
conducted on environment, heat given 
back to cold reservoir


•Efficiency of heat engine smaller than 1:

Recap Chapter 9 — Thermal machines

•Best possible engine, equality for 
reversible processes only


•Note that in nature most (macroscopic 
processes) are irreversible (friction) —> 
reducing epsilon


