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Recap… Chapter 6, Energy, heat and work in TD

•What is the internal and thermal energy? What is the internal energy of ideal gas? 


• Internal energy Eint:  total amount of energy of all molecules, sum of thermal and 
potential energy 


•Thermal energy Etherm: kinetic energy due to translation, rotation and vibrations


•Eint of ideal gas (no potential energy) = Etherm


•State variables


•How can we describe the “flow of energy”?


•Heat: transfer of energy between objects due to T difference/change


•Work: transfer of mechanical energy independent of T (e.g. PV)


•NO state variables


•Conservation of energy: Delta Eint = Q - W (main focus of this lecture!!)
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 08:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (4th week) 
Energy, Heat, and Work 
Energy 
A unit of energy more related to thermal energy: 
1 calorie (cal) = energy needed to increase the temperature of 1 g of water by 1 Celsius degree 
1 cal = 4.186 J = 4.186 Nm 
 
Temperature T in Kelvin: a measure of the average kinetic energy of individual molecules  
Internal Energy 

€ 

E int: total energy contained by a thermodynamic system  
 = thermal energy + potential energy 
Thermal energy is kinetic energy due to translation, rotation and vibration, directly link to the 
temperature. 
 
Internal energy of an ideal gas: no potential energy, i.e. internal energy is equal to the thermal energy. 
Thermal energy is only due to the translational kinetic energies of all the gas molecules.  

€ 

E int = Ekin = N
m v2

2
=
3
2
NkT =

3
2
nRT  

where N is the number of molecules and n number of moles of the gas.  
 
Flow of energy 
Work (W): flow of energy out from the system in mechanics not related to temperature 
Heat (Q): flow of energy into the system due to the difference in temperature  
They can be transferred from one to the other. They do not define the state, i.e. not state variables.  
 
Sensible heat 
For Sensible heat, heat into the system, Q, changes the temperature of the system by ΔT: 

Q =m× c×ΔT  
where m is the mass of the material in the system and c is a quantity characteristic to the material 
called "specific heat". The unit of c is given by   

€ 

J kg⋅ C!( )  or   

€ 

kcal kg⋅ C!( ) . From the definition of 
the calorie, c for the water at   

€ 

15!C  and a constant pressure of 1 atm is   

€ 

1 kcal kg⋅ C! .  
Example: 
We consider a system of Iron container of 20 kg, holding 20 kg of water. The specific heat for the 
iron is   

€ 

0.11 kcal kg⋅ C!( ) . Now we calculate the heat needed to increase the temperature of the 
system from   

€ 

10!C  to   

€ 

90!C . For iron  

  

€ 

Qiron = m⋅ c iron ⋅ ΔT = 20kg⋅ 0.11kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =176kcal 
and for water  

  

€ 

Qwater = m⋅ cwater ⋅ ΔT = 20kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (90 −10)C! =1600kcal 
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and heat of 3kg of water is  

  

€ 

Q3kg = m⋅ cwater ⋅ ΔT = 3kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (Twater-3.5kg − 5.88)C!  
Since they are mixed each other,  

€ 

Q0.5kg +Q0.5kg = 0 
leading to  

€ 

0.5kcal⋅ Twater-3.5kg + 3kcal⋅ Twater-3.5kg − 3kca⋅ 5.88 = 0 
thus 

€ 

Twater-3.5kg =
3 × 5.88
0.5 + 3

= 5.04  

i.e. the temperature of the water becomes   

€ 

5.04C! . 
 
Evaporation and boiling 
At the boiling point, liquid changes to gas everywhere leading to the formation of gas bubble in the 
liquid. On the other hand, the change from liquid to gas occurs at the boundary surface between the 
two even below the boiling temperature, called evaporation: molecule with higher kinetic energy 
escaping from the liquid phase to the gas phase. Thus the average kinetic energy of the molecules 
remaining in the liquid decreases, thus the temperature of the liquid drops.  
 
Work 
When the volume changes, work is done. Consider a cylindrical container with a movable piston, 
which is gas tight but no friction with the wall. We change the volume in a quasistatical way, i.e. at 
any instance of the state change, the state in an equilibrium state, i.e. T and P are uniform in the gas. 
The gas pressure pushes the piston generating a force, 

€ 

F = PA  where A is the area of the piston. The 
work done to move the piston by an infinitesimal amount dl, the work done is given by  

€ 

dW = Fdl = PAdl = PdV   
where 

€ 

dV = Adl  is the infinitesimal change of the volume. Note that when the piston is pushed up, 
this is the work done by the gas. When the volume changes from 

€ 

Va  to 

€ 

Vb, the work done is given by 

€ 

W = PdVVa

Vb∫  

 



Recap… Chapter 6, Heat capacity and calorimetry
•What is the relation between (sensible) heat and temperature?


•What is Calorimetry? 


•Measurement of changes in temperature to determine the amount of heat gained or 
lost by a system or the heat capacity of a material; “quantitative measurement of 
heat exchange.


•Are heat capacities of gases the same at const V or at const P?


•For gas, heat capacity different for processes at constant Volume or at constant 
Pressure:


•What are the heat capacities of ideal gas?
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 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  

 2 

 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  

 3 

€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314 J
mol⋅ K

=1.99 cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜

⎞

⎠
⎟=
2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

3
2
R  

From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 

€ 

E = αx2 with a 
constant α. The average energy 

€ 

E  is then given by  

€ 

E =
αx2e−αx

2 kTdx
−∞

∞∫
e−αx

2 kTdx
−∞

∞∫
=
kT
2

 

If we extend the energy to be  

€ 

E = α i xi
2

i=1

n f

∑  

i.e. the energy is a sum of 

€ 

n f  components, all having a same functional form. The average energy is 
then becomes, 

  

€ 

E =

dx1−∞

∞∫ ! dxn f α i xi
2

i=1

n f

∑ e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫
=

dx1−∞

∞∫ ! dxn f α i xi
2e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫i=1

n f

∑  

Since all the but one integrals cancel between the numerators and denominators, we have 

€ 

E =
dxiα i xi

2e−α i xi
2 kT

−∞

∞∫
dxie

−α i xi
2 kT

−∞

∞∫i=1

n f

∑ =
n f
2
kT  

For a gas of N molecules, or n mole, it follows that  
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For a gas of N molecules, or n mole, it follows that  

• c is the heat capacity



• If we consider non-ideal gas, which additional form of motion we should consider? 


• Rotational and vibrational motions


•How can we elegantly account for changes of heat capacities for non-ideal gas?


• Equipartion theorem: the energy of a molecule is shared equally between 
different degrees of freedom, each which carries on average an energy of kT/2.


• Thus, the heat capacities (at const V, CV) for non-ideal gas with monotomic or 
diatomic molecules are:
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€ 

E =
n f
2
NkT  or 

€ 

E =
n f
2
nRT  

respectively. It follows that  

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

n f
2
R 

A mono atomic gas has only translational degrees of freedom and the energy is given by  

€ 

E =
m
2
vx
2 + vy

2 + vz
2( )  

i.e. 

€ 

n f = 3. More complex molecules have rotational kinetic energies, in addition to the translational 
kinetic energies.  

 
For example, diatomic molecules have two and triatomic molecules three degrees of freedom and the 
kinetic energy is given by  

€ 

E =
m
2
vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+
L2
2

2I2
 and 

€ 

E =
m
2
vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+
L2
2

2I2
+
L3
2

2I3
 

respectively, where L's  are the angular momenta and I's corresponding moments, i.e. 

€ 

n f = 5 and 6. 
Energy of diatomic gas with vibration is given by  

  

€ 

E =
m
2

vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+

L2
2

2I2
+

µ
2
! ˙ r 1 −
! ˙ r 2( )2

+
k
2
! r 1 −
! r 2( )2

 

where µ is the reduced mass of the two atoms and k is the spring constant, i.e. 

€ 

n f = 7. 
Here are some considerations:  
 Monatomic molecule: 3-translational kinetic energies, 

€ 

n f = 3 
 Diatomic molecule: plus 2-rotational kinetic energies, 

€ 

n f = 5  
 Diatomic molecule: plus1-vibrational kinetic and 1-vibrational potential energies, 

€ 

n f = 7  
It seems that energy of a molecule is equally shared among the active degrees of freedom and the 
each degree of freedom caries in average kT/2 of the energy. This is called equipartition theorem.  

 
Note that 

€ 

3
2
R = 2.98cal mol⋅ K, 5

2
R = 4.98cal mol⋅ K, 7

2
R = 6.97cal mol⋅ K  
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kinetic energies.  

 
For example, diatomic molecules have two and triatomic molecules three degrees of freedom and the 
kinetic energy is given by  

€ 

E =
m
2
vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+
L2
2

2I2
 and 

€ 

E =
m
2
vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+
L2
2

2I2
+
L3
2

2I3
 

respectively, where L's  are the angular momenta and I's corresponding moments, i.e. 

€ 

n f = 5 and 6. 
Energy of diatomic gas with vibration is given by  

  

€ 

E =
m
2

vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+

L2
2

2I2
+

µ
2
! ˙ r 1 −
! ˙ r 2( )2

+
k
2
! r 1 −
! r 2( )2

 

where µ is the reduced mass of the two atoms and k is the spring constant, i.e. 

€ 

n f = 7. 
Here are some considerations:  
 Monatomic molecule: 3-translational kinetic energies, 

€ 

n f = 3 
 Diatomic molecule: plus 2-rotational kinetic energies, 

€ 

n f = 5  
 Diatomic molecule: plus1-vibrational kinetic and 1-vibrational potential energies, 

€ 

n f = 7  
It seems that energy of a molecule is equally shared among the active degrees of freedom and the 
each degree of freedom caries in average kT/2 of the energy. This is called equipartition theorem.  

 
Note that 

€ 

3
2
R = 2.98cal mol⋅ K, 5

2
R = 4.98cal mol⋅ K, 7

2
R = 6.97cal mol⋅ K  

Watch Equipartion theorem: https://www.youtube.com/watch?v=kzPHKchqkmY 
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Note that 

€ 

3
2
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2
R = 4.98cal mol⋅ K, 7

2
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Recap… Chapter 6, Heat capacity for non-ideal gases & equipartition theorem



Recap… Chapter 6, Latent heat and phase transitions
•Which forms of heat do we have in TD? 


•Two forms of heat: sensible heat (section 6.1-6.3) and latent heat


•What is latent heat? 


•Heat needed for rebuilding the molecular structure during a phase transition, 
NO change in temperature

 3 

When you cross the solid black lines by changing the pressure or/and temperature, there is a phase 
transition, usually involving latent heat. At the triple point, the all three phases exist simultaneously. 
Above critical point, vapour can change to water or water to vapour smoothly without latent heat.  
 
Latent Heat 
Latent heat is heat that does not change the temperature. When the phase of matter changes, e.g. from 
solid to liquid, or from liquid to gas, heat to the system is needed. However, the temperature of the 
system remains constant, i.e. all the energy is used to transform the molecular structure and not to 
increase the kinetic energy of molecules: 
Heat of fusion (melting) 

€ 

LF : heat needed to change 1 kg of material from the solid to liquid phase.  
Heat of vaporization (boiling) 

€ 

LV: heat needed to change 1 kg of material from the liquid to gas 
phase.  
They are called latent heat. The total heat needed, Q, to melt m kg of material is then 

€ 

Q = mLF  
On the other hand, in order to solidify m kg of liquid, 

€ 

Q = mLF , must be taken out from the system at 
the melting temperature.  
Example: 

 
We consider a system of 0.5 kg of ice at   

€ 

−10!C  put into 3 kg of water at   

€ 

20!C . Specific heat of ice is 

  

€ 

0.5 kcal kg⋅ C!( )  and heat of fusion, 

€ 

79.7kcal kg . For the ice to melt, first the temperature must 
raise to   

€ 

0!C  requiring heat of  

  

€ 

Qice = m⋅ c ice ⋅ ΔT = 0.5kg⋅ 0.5kcal⋅ kg⋅ C!( )−1⋅ (0 +10)C! = 2.5kcal 
plus latent heat of  

€ 

Qmelting = mLF = 0.5kg⋅ 79.7kcal⋅ kg−1 = 39.85kcal 
thus the total heat needed is  

€ 

Qtotal =Qice +Qmelting = 42.35kcal 
which has to come from the 3 kg of water at   

€ 

20!C . This will cool down the temperature of the water 
to 

€ 

Twater-3kg , which can be derived from  

  

€ 

−Qtotal = m⋅ cwater ⋅ ΔT = 3kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (Twater-3kg − 20)C! = −42.35kcal 
leading to  

  

€ 

Twater-3kgC
! = −

42.35kcal
3kcal⋅ C!−1

+ 20C! = 5.88C!  

Now we are putting 3kg of water at   

€ 

5.88C!  and 0.5 kg of water at   

€ 

0!C  together. If we denote the 
final temperature of 3.5 kg of water to be 

€ 

Twater-3.5kg , the heat needed for the 0.5 kg of water is  

  

€ 

Q0.5kg = m⋅ cwater ⋅ ΔT = 0.5kg⋅ 1kcal⋅ kg⋅ C!( )−1⋅ (Twater-3.5kg − 0)C!  
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The total heat required is thus 

€ 

Qtotal =Qiron +Qwater =1776kcal 
When the system cools down from   

€ 

90!C  to   

€ 

10!C , the heat out from the system is 1776kcal. Note that 
water is a good heat reservoir being a material with one of the highest value of c.  
 
Open, Closed and Isolated System 
Closed system: can exchange energy but not matter with the surroundings 
Isolated system: can exchange neither energy nor matter with the surroundings  
Open system: can exchange both energy and matter with surroundings   
 
Phase of matter and transitions between them 
As discussed in the first week, there are three phases of matter: solid, liquid and gas. Table below 
summarise the transitions mong the phases:   
   TO 
  Solid Liquid Gas 
FROM Solid - Melting Sublimation 
 Liquid Freezing - Vaporisation  
 Gas Deposition Condensation -   
 
Figure below is called “phase diagram” where three phases are indicated as a function of pressure 
and temperature.  

 

•What is a phase diagram in TD, and where 
comes latent heat in? 


•Three phases of a substance as a 
function of Pressure and Temperature


•What are the main characteristics of the phase 
diagram of water?


•Unusual behaviour of water, Triple point, 
critical point



Content of this course — today’s lecture
Lecture 1: —Chapter 1. Introduction

                 —Chapter 2. Temperature and zeroth law of thermodynamics


Lecture 2: —Chapter 3. Gas laws


Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes


Lecture 7: — Mock exam I with Dr. Tress


Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 


Lecture 12: —Mock Exam II with Dr. Tress

Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)


Lecture 14: —Final review and open questions



7. First law of thermodynamics and thermal processes

• 7.1 First law of thermodynamics


• 7.2 Thermal processes


• Isochoric processes


• Isobaric processes


• Isothermal processes


•Adiabatic processes



7.1 First law of Thermodynamics

•Recap some definitions…


•State variables: state of a system is characterised by physical properties that are described 
by a set of state variables (Xi, such as V, P, T, n,…). The state is entirely specified by the 
values of these state variables and it does not depend on the history of the system.


•Thermodynamic systems: 


•open: allows for matter and energy exchange with environment

• closed: does not allow for matter exchange with environment (but for energy 

exchange)

• adiabatic: does not allow for matter exchange and heat exchange with the 

environment (but for mechanical energy exchange)

• isolated: does not allow for any interaction with the environment (no matter, no 

energy)



engineering view

W

physics view

AEint =Q-PAN



Q =0; W=0





First law : AEint = Q-w
z

work done orsystefrom enoic

-1800]
=> AEint = 2500 1-1808) = 43008



•First law of Thermodynamics (energy conservation): heat added to the system, work done 
BY system (W=P𝚫V) is equal to the change in internal energy of a system:


•First law different thermodynamic systems (other than closed)


• isolated: no heat and work transfer, Q = 0, W = 0 —> 𝚫Eint = 0


• adiabatic: Q = 0, 𝚫Eint = - W


•open: matter exchange possible described by chemical work C: 𝚫Eint = Q - W - C

Summary 7.1 First law of TD
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
Thermodynamic (5th week) 
Thermodynamical State 
A thermodynamic state is described by a set of state variables. Examples of state variables are, P, V, 
T, number of moles,  etc. They are uniquely defined, independent of how the system arrived at 
that particular state. As seen later, heat or work are not state variables since they depend on how the 
system reached the particular state. Once a sufficient numbers of variables have bees specified, all 
other variables are uniquely determined. The number of variables needed to specify the system 
depends on the system.  

Example: System of an ideal gas 
The gas law for ideal gas  shows that a set of three variables out of four, i.e. P, V, T, and N 
determines the system.  
 
The First Low of Thermodynamics 
Extending the concept of the energy conservation to the thermodynamical system. In a closed system, 
we have  

ΔEint =Q−W  

€ 

ΔE int; Change of the internal energy, Q: heat into the system, W: work by the system 
In the isolated system, no energy transfer can occur, i.e. Q = 0 and W = 0, hence 

€ 

ΔE int = 0. 
 

Thermal Processes 
There are the following four thermal processes for gas to change its state: 
 Isothermal (ΔT = 0): while the state changes, the temperature is kept constant.  
 Adiabatic (Q = 0): process with no heat, i.e. thermally isolated system or a very fast process.  
 Isobaric (ΔP = 0): while the state changes, the pressure is kept constant. 
 Isovolumetric (ΔV = 0): while the state changes, the volume is kept constant. 
 
Molecular Specific Heat 
Recall the specific heat, c, for solid and liquid: 

€ 

Q = mcΔT  
where the heat Q is in cal,  m is the mass in g and ΔT the temperature difference in degree Celsius. 
For the gas, two more variables, volume (V) and pressure (P), are needed in consideration. Therefore, 
two kinds of specific heats are introduced: 

€ 

cV : specific heat at constant volume 

€ 

cP : specific heat at a constant pressure.  
and they are fairly different.  
 

€ 

E int

€ 

PV = NkT

-> closedsysh

/
Chapter 10
or TDpolenti



7.2 Thermal processes
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
Thermodynamic (5th week) 
Thermodynamical State 
A thermodynamic state is described by a set of state variables. Examples of state variables are, P, V, 
T, number of moles,  etc. They are uniquely defined, independent of how the system arrived at 
that particular state. As seen later, heat or work are not state variables since they depend on how the 
system reached the particular state. Once a sufficient numbers of variables have bees specified, all 
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The gas law for ideal gas  shows that a set of three variables out of four, i.e. P, V, T, and N 
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Extending the concept of the energy conservation to the thermodynamical system. In a closed system, 
we have  

ΔEint =Q−W  
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ΔE int; Change of the internal energy, Q: heat into the system, W: work by the system 
In the isolated system, no energy transfer can occur, i.e. Q = 0 and W = 0, hence 
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ΔE int = 0. 
 

Thermal Processes 
There are the following four thermal processes for gas to change its state: 
 Isothermal (ΔT = 0): while the state changes, the temperature is kept constant.  
 Adiabatic (Q = 0): process with no heat, i.e. thermally isolated system or a very fast process.  
 Isobaric (ΔP = 0): while the state changes, the pressure is kept constant. 
 Isovolumetric (ΔV = 0): while the state changes, the volume is kept constant. 
 
Molecular Specific Heat 
Recall the specific heat, c, for solid and liquid: 

€ 

Q = mcΔT  
where the heat Q is in cal,  m is the mass in g and ΔT the temperature difference in degree Celsius. 
For the gas, two more variables, volume (V) and pressure (P), are needed in consideration. Therefore, 
two kinds of specific heats are introduced: 

€ 

cV : specific heat at constant volume 

€ 

cP : specific heat at a constant pressure.  
and they are fairly different.  
 

€ 

E int

€ 

PV = NkT

In the field of thermodynamics, a thermal process refers to any process or series of 
operations in which a thermodynamical system exchanges heat with its 
surroundings and/or undergoes a change in temperature. 

Thermal processes can be categorized into several specific types of processes, 
each defined by how the system interacts with its environment and how certain 
thermodynamic properties change over the course of the process. Some common 
types of thermal processes include:

work

bochoric
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Set-up: A gas is injected into a piston. A thermocouple is placed inside the piston —> if T 
increases/decreases —> Voltage flows through thermocouple, V is measured

What happens when the piston is compressed/expanded?

Compression et détente adiabatique
https://www.youtube.com/watch?v=0TlewxjyKZ0



Set-up: A gas is injected into a piston. A thermocouple is placed inside the piston —> if T 
increases/decreases —> Voltage flows through thermocouple, V is measured

What happens when the piston is compressed/expanded?

Compression et détente adiabatique
https://www.youtube.com/watch?v=0TlewxjyKZ0

Key take-away: Process is adiabatic expansion, 
it is used in refrigerators, air conditioners, and 
refrigeration units to cool (in heat pumps). It is 
also used in scientific research to achieve very 
low temperatures.

Observation: When the piston is compressed 
(expanded), the temperature increases 
(decreases), and as a result, a voltage flows 
through the thermocouple. This voltage is then 
amplified and displayed, allowing the deduction 
of the temperature.



How to draw an adiabatic process in the
POdiagra

First law : Ati = Q - w = Q -PAG

For idealgas : A Eint = nGAT

=Q = PAN+nCAT I
adiabatic

=nattain
=>=T+ oo=T+
Ideal gas law

: PV= nRT ( differentialona
d(put = dURT) = JAP+Par= nRdT



=PdO intolol

=>t
pur

=+
o=( +) +R
=R

=Cp lidealgas !)

0 =c+ I



o=+
i

if "adiabatic index"

0=+ Recall
:a log=

(logf(x)=
=> dllogy()))=

Rewrite : J

0 = dog(p) +y dog(0)
0 = dog(P) + dog (0) Isamof log-logoprod



0 = dog(PCU) (integrate
coust = log(pur) /ep
econst = py5
wa

coust = Adiabolic process & idealgas :
por = coust

> 1 since J := (>
P == nRT cust

T vr-1 = coust





Conceptual example :
Pr A bothermad & adiabolic

D sothermal

BL expansion ofgasfoainitialJ# work done ?
I In which process is more

in v

More work done in the isothermal process
- Area under eachcurve represents the work

Le=Pat Wadiab Wishthe



8

a)0=8 = Pr =P()

↳ Tu = Too motoe
=293k=222k = -51c



a calculation of work :
For ideal

gas
: dEint-nCdT

First law : dEint = dQ-Pau
= dQ-PdU-ndT
=> dQ = nGdT+PACO

↑
↳ PaU=-nGdT adiabatic

Oz Tz

WadibSu=
= - nGAT = -u(( -T)

Use PU= nRTX Cp-Germ
Wadib =-C()= (P -P



(PO-P)
=> Wadiab=-PC

8
-1

lusent numbers :Wadiab58atmike-Latm:
2

= 2
.
42 e . atm =242]

A Eint
= Q-w

Work done bysystem
on the environment





• Isochoric/Isovolumetric 𝚫V = 0 


• Isobaric 𝚫P = 0


For ideal gas: ΔEint = nCVΔT 

Note that here any change from one thermal state to another can be made as 
combinations of isochoric and isobaric processes, with ΔEint = nCVΔT 


• Isothermal 𝚫T = 0 —> ΔEint = 0 (if ideal gas) —> Q = W = PΔV  = nRΔT = const.


•Adiabatic Q = 0 —> ΔEint = - W

For ideal gas: Q = PΔV + nCV ΔT —> VγP= const.

Summary 7.2, thermal processes
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Measured values show that 1) some of the degrees of freedom are not "active", and 2) decreases with 
temperature to

€ 

nf = 5 then to 

€ 

nf = 3 for different gas molecules, i.e. gasses behave like a monatomic 
molecule at a very low temperature. These observations are related to the foundation of quantum 
theory.  
 
Change of internal energy for ideal gas 
For isovolumetric process, we have Δ! = 0, thus 

ΔEint =QV = nCVΔT  
and for isobaric process 

ΔEint = nCPΔT − PΔV  
For ideal gas, we have 

€ 

CP −CV = R  and ΔV = nRΔT P , thus  
ΔEint = n CV + R( )ΔT − nRΔT = nCVΔT  

i.e. the change of internal energy for a temperature change of ΔT is given by  
ΔEint = nCVΔT  

for both isovolumetric and isobaric processes. For ideal gas, any change in two thermal states can 
be made as combinations of Isovolumetric and isobaric processes, the change of internal energy for a 
temperature change of ΔT for any processes is given by  

ΔEint = nCVΔT . 
Adiabatic Process 
As mentioned, for a defined gas, among three state variables, T, V and P, there are only two 
independent variables. Let us use T and V, leading to   

€ 

ΔE int =
∂E int
∂V
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⎠ 
⎟ 
T
ΔV +

∂E int
∂T
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⎠ 
⎟ 
V
ΔT . 

for a very small change of the state, i.e. Δ! ! ≪ 1 and Δ! ! ≪ 1, and also  

! = ! ! !"
!!!!!

!!
≈ ! !! !"

!!!!

!
= !Δ! 

The first law of thermodynamics gives  

€ 

ΔE int =Q −W =Q − PΔV . 
By combining the two equations, we obtain  

€ 

Q = PΔV +
∂E int
∂V

⎛ 

⎝ 
⎜ 
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⎠ 
⎟ 
T
ΔV +

∂E int
∂T

⎛ 

⎝ 
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⎠ 
⎟ 
V
ΔT . 

For ideal gas, recalling that the internal energy depends only on the temperature, i.e. 

€ 

∂E int ∂V( )T = 0 
and the definition of 

€ 

CV , it follows that  

€ 

Q = PΔV + nCVΔT . 
In an adiabatic process, no heat is allowed. This can happen when the system is thermally well 
isolated or the process happens very fast. Let us consider a very slow (quasistatic) process where the 
state of ideal gas is adiabatically changed from A:

€ 

Va,  Pa,  T0( )  to C:

€ 

Vb,  Pc,  Tc( ) , i.e. C has the same 
volume as B.  Since there is no heat involved in the process, Q = 0, thus  

€ 

PΔV + nCVΔT = 0 . 
Using 

€ 

PV = nRT  for the ideal gas, we obtain 
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Summary 7.2, thermal processes in the PV-diagram



Conceptual questions
• An ideal monoatomic gas expands slowly to twice its volume (a) isothermally, (b) adiabatically, (c) 

isobarically. Plot each on a PV diagram. In which processes is ΔEint the greatest and least? In 
which is W the greatest and the least? And in which is Q the greatest and the least?


• An ideal gas undergoes an isobaric compression and then an isenvolumetric process that brings it 
back to its initial temperature. Had the gas undergone one isothermal process instead (a) the work 
done on the gas would be the same; (b) the work done on the gas would be less; (c)…would be 
greater; (d) need to know the T of the isothermal process.


• An ideal gas undergoes an isothermal process. Which of the following statements are true? (i) no 
heat is added or removed from the gas. (ii) the internal energy of the gas does not change. (iii) the 
average kinetic energy of the molecules/gas particles does not change.


• In an isothermal process, 3700 J of work is done by an ideal gas. Is this enough information to tell 
how much heat has been added to the system? If so, how much? If not, why not? 


• An ideal gas undergoes an adiabatic expansion. As a result (i) the T of the gas remains constant 
and the P decreases. (ii) both T and P of the gas decrease. (iii) the temperature of the gas 
decreases and the pressure increase. (iv) both T and V of the gas increase. (v) both the 
temperature and pressure of the gas increase.


•Think of your questions!
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Up next:
Lecture 1: —Chapter 1. Introduction

                 —Chapter 2. Temperature and zeroth law of thermodynamics


Lecture 2: —Chapter 3. Gas laws


Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes


Lecture 7: — Mock exam I with Dr. Tress


Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 


Lecture 12: —Mock Exam II with Dr. Tress

Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)


Lecture 14: —Final review and open questions


