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Recap Chapter 8… Reversible and irreversible processes
•What is the definition of reversible and irreversible processes?


•Any process, that can be reversed by changing signs of Q and W, is 
reversible; Entropy production = 0.


•Any process, that cannot be reversed by changing signs of Q and W is 
irreversible. “Arrow of time comes in”; Entropy production > 0
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Thermodynamic (6th week) 
Entropy and the second and third Laws of Thermodynamics 
Reversible and irreversible process 
Consider an isothermal expansion of an n-mol ideal gas at 

€ 

T = T0  changing its state from 

€ 

A Va,  Pa,  T0( ) to 

€ 

B Vb,  Pb,  T0( )  through a quasi-static path (see Lecture Note Thermodynamics 5th 
week). This process follows the line given by 

€ 

PV = nRT0  on the V-P plane. Since there is no 
temperature change, 

€ 

ΔE int = 0 and from the first law of thermodynamics, Q = W where work W is 
given by  

€ 

WA→B = PdVA
B∫ = nRT0

dV
VVa

Va∫ = nRT0 ln
Vb
Va

 

 thus 

€ 

Q
A→B

= nRT0 ln
Vb
Va

. 

Once the system is at the state B, we can make the system to follow the same path back to A by 
applying 

€ 

−QA→B  and 

€ 

−WA→B, just reversing the sign. Any process that can be reversed by changing 
the sign of Q and W is called reversible.   
 Now consider a process where a thermally isolated container with a volume 

€ 

Vb is divided into 
two by a tight thermally isolating wall. One section is filled with an n-mol ideal gas at 

€ 

A Va,  Pa,  T0( ) 
and the other vacuum. Now we remove the wall and let the gas to expand into the whole volume. 
Since the container is thermally isolated, Q = 0, since gas expands without moving anything, W = 0. 
The first law of thermodynamics leads to 

€ 

ΔE int = 0. The final state is 

€ 

B Vb,  Pb,  T0( ) . Since the 
internal energy depends only on temperature, no change of temperature in this process. The process 
cannot be shown as a quasi-static path on the V-P plane. Clearly, this process cannot be reversed by 
simply changing the sign of Q and W. Any process that cannot be reversed by changing the sign of Q 
and W is called irreversible.    

 



•Entropy S is a state variable (independent of the path of the process), important for 
distinguishing between reversible and irreversible processes, quantify for “disorder”


•dSsystem =  dSenv + dSprod;   

•dSenv: change of entropy due to heat exchange with environment

•dSprod: entropy production due to dissipation within the system


•Entropy due to heat exchange with environment


•dSenv in isothermal processes


•dSenv in isochoric processes


•dSenv in isobaric processes


•dSenv in adiabatic processes is zero (as Q is zero)

Recap Chapter 8…  What is Entropy?
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Entropy 
For a reversible process, entropy changes of a system, ΔS, for a change of its state from A to B with 
heat Q and at a constant temperature T, is given by  

€ 

ΔS =
Q
T

 

where the temperature is in Kelvin. If the temperature of the system is not constant, ΔS is given by 

€ 

ΔS = dSA
B∫ =

˜ d Q
TA

B∫  

where the integral follows a quasi-static path from A to B. Note that 

€ 

Q T  of infinitesimally small 
step on the path is given by 

€ 

˜ d Q T . It can be shown that ΔS is independent of the path, unlike the heat. 
Thus the entropy, S, is a state variable such as volume and temperature and ΔS = S(B) − S(A). 
 We demonstrate the fact that ΔS does not depend on the path, by calculating ΔS explicitly for a 
change of state A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  for an n-mol ideal gas in two different reversible 
paths. As demonstrated above, the state from A to B can be achieved through isothermal expansion, 
where heat is given by   

Q = nRT0 ln
Vb
Va

. 

Since the temperature does not change in the process, the entropy change is then given by  

ΔSab =
Q
T0
= nR lnVb

Va
. 

We then consider reaching B in two steps, first decreasing the pressure under constant volume to 
reach D Va,  Pb,  Td( ) , followed by increasing the volume under constant pressure (see again Lecture 
Note Thermodynamics 5th week). For the heat, we have: 

A→D Qad = nCVdT  and D→B Qdb = nCPdT  
which lead to  

ΔSad = nCV
dT
T

= nCV ln Td

T0
T0

Td∫  for A→D and ΔSdb = nCP
dT
T

= n CV + R( ) lnT0

Td
Td

T0∫  for D→B . 

The total entropy change is given by  

Δ ʹSab = ΔSad +ΔSdb = nCV ln
Td
T0
+n CV + R( ) lnT0

Td
=nR lnT0

Td
 

Using the gas low, PV=nRT, we obtain,  
T0
Td
=
VbPb
VaPb

 

which follows that  
T0
Td
=
Vb
Va

 

showing that the two different paths give same ΔS. Since Va <Vb , we have ΔS > 0. 
 Considered paths can be indeed reversed, i.e. C→A, by changing the sign of Q and W, with 
negative entropy −ΔS. Therefore, entropy change for a loop such as A→B→C→A,  

€ 

ΔSab + ΔSbc + ΔSca =
˜ d Q
T∫ = 0  

i.e. it is always 0. We conclude that ΔS does not depends on the path, thus S is a state variable.  
 For irreversible process, it turns out  
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•How does entropy of a system due to heat exchange with environment and due to 
production differ for reversible and irreversible processes?


•Entropy due to heat exchange with environment


•For the same total change in entropy, in reversible/irreversible dSenv 
is


•For irreversible processes, heat can be “lost” into friction via 
irreversibly increasing the internal energy


•Entropy production due to dissipation within a system


•Reversible: dSprod = 0


• Irreversible: dSprod > 0 (e.g. free expansion of gas at T=const and 
Q=0)

Recap Chapter 8 … Entropy
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ΔS =
!dQreversible

TA

B
∫ >

!dQirreversible

TA

B
∫  

For the state change of A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  discussed above, indeed we have  
!dQreversible

TA

B
∫ = nRT0 lnVb

Va

> 0 and 
!dQireversible

TA

B
∫ = 0 . 

Therefore, we can write, 

 

€ 

ΔS ≥
˜ d Q
TA

B∫  

where the equal sign holds only for reversible processes, i.e. entropy change is given by  

ΔS =
!dQ
TA

B
∫  

only for the reversible process. If we consider a thermally isolated system, no heat for any process, 
i.e. 

€ 

ΔS ≥ 0 .  
 
Entropy Second and third laws of thermodynamics 
The second law of thermodynamic is: In any process in which a thermally isolated system goes from 
one state to another state, the entropy cannot be decreased; i.e. 

€ 

ΔS ≥ 0 . 
The third law of thermodynamic is: The entropy of a system converges to a constant value 

€ 

S0 = 0 for 

€ 

T →0 independent of all the other properties for the particular system.  
 
Entropy and the first law of thermodynamic 
For reversible processes with a fixed temperature, T, heat, Q, can be obtained from the change of the 
entropy, ΔS as 

€ 

Q = ΔST  or for an infinitesimally small path, 

€ 

˜ d Q = TdS . Then, The first law of 
thermodynamics can be written as  

dEint =Q −W =TdS − PdV  
where all the terms consist of state variables, not depending on the path. Therefore, it is valid even 
for irreversible process. One may summarise as: 
 

€ 

˜ d Q = TdS   only for reversible case 
 

€ 

˜ d W = PdV   only for reversible case 
 

€ 

dE int = ˜ d Q − ˜ d W  always valid  
 

€ 

dE int = TdS − PdV  always valid 
For irreversible process, we have 

€ 

TdS ≥ ˜ d Q, thus 

€ 

PdV ≤ ˜ d W .  
 
Statistical interpretation of Entropy 
Once we obtain, 

€ 

dE int = TdS − PdV , temperature, T, can be given by  

€ 

1
T

=
1

∂E int ∂S( )V
=

∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

 While deriving the Boltzmann constant during the Thermodynamics 3 lecture, we encounter an 
expression: 

€ 

dlnΩ E( )
dE

=
1
kT

 



•How can we connect entropy to the first law of TD?


•Entropy and the first law of TD:  dEint = dQ − dW = TdS − PdV 


•Only for reversible processes: dQ = TdS and dW = PdV


•What is the second law of Thermodynamics?


•Each thermodynamic system has a state variable called entropy S. The 
entropy of thermally isolated systems (Q=0) cannot decrease over time: ΔS 
≥ 0 —> Entropy is not conserved for most natural processes (unless they 
are fully reversible)


•What is the third law of Thermodynamics? 


•The entropy of a system converges to a constant value S0 = 0 for T →0 
independent of all the other properties for the particular system. 

Recap Chapter 8 … Entropy and the three laws of Thermodynamics



•How can we interpret entropy from a microscopic/statistical point of view?


•The entropy S of a particular macro state of a TD system is related to the number of 
microstates on the particle level: 


•What are then the implications of the second law of TD? 


•An increasing entropy ΔS ≥ 0 of a thermally isolated system (Q=0) implies that a 
system evolves from more order (lower Ω) to equal or less order (equal or higher Ω) 
with time (equality for reversible process only).


•What are the implications for the third law of TD?


• If S —> 0 for T—>0, it implies only one micro state of a system, “state of perfect/
maximum order”


•Entropy change for irreversible Joule free expansion in an thermally isolated system can be 
approximated by a reversible, isothermal expansion: 

Recap Chapter 8 Statistical interpretation of entropy
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where, k is the Boltzmann constant, and Ω(E) is the number of states with energy E. as an thermal 
equilibrium condition. This leads to  

€ 

k
dlnΩ E int( )
dE int

=
∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

By integrating the both sides, we identify  

€ 

S = k lnΩ 
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is 
given by the formula, 

€ 

S = k lnΩ, where Ω is the number of microstates associated to the particular 
macrostate.  At 

€ 

T = 0, there is only one state. Evolution of a thermal system is in the direction from 
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.    

 
 
Entropy of free expansion a la statistical mechanics  
We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
placed in a container with volume 

€ 

Va . In that volume, there are m possible states that the gas 
molecule can take. The number of possible configuration taken by the N molecules, Ω, is then given 
by 

€ 

Ω=mCN =
m!

N! m − N( )!
 

and entropy by    

€ 

S = k lnΩ = k ln m!
N! m − N( )!

 

Since we are considering a macroscopic system, both m and N are large, where 

€ 

lnn!≈ n lnn − n  
(Starling's approximation) can be used. This leads to  

€ 

S = k ln m!
N! m − N( )!

≈ k m lnm − N lnN − m − N( ) ln m − N( )[ ] .  

Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and 
the following approximation holds: 

€ 

m lnm − N lnN − m − N( ) ln m − N( ) = m ln m
m − N

− N ln N
m − N

≈ m ln 1+
N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − N ln

N
m
1+

N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

≈ N − N ln N
m
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and 

€ 

S ≈ k N − N ln N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

When the volume of the container is increased to 

€ 

Vb , the number of possible states in the container 
also increases from m to 

€ 

xm , where 

€ 

x =V2 V1 . Entropy is then given by 

€ 

ʹ S ≈ k N − N ln N
xm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and entropy change  

€ 

ΔS = ʹ S − S ≈ kN ln x  
Converting it to the mole number, n, and universal gas constant R, it follows that  

 

€ 

ΔS ≈ nR lnVb
Va

 

in agreement with the thermodynamics calculation.  
 
Special demonstration: Entropy of mixing 
A thermally isolated container with a volume V is split into two, 

€ 

V1 = xV and 

€ 

V2 = 1− x( )V  where 

€ 

0 ≤ x ≤1, by a thermally isolated wall. They are filled with two different ideal gasses of 

€ 

n1 = xn -mol 
and 

€ 

n2 = 1− x( )n-mole, respectively. Both gasses have a same pressure, 

€ 

P1 = P2 ≡ P , and a same 
temperature, 

€ 

T1 = T2 ≡ T . Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to 
volume-1.  
Since there is no temperature difference between the two regions, the temperature remains constant in 
this process. The two gasses do not provide any work either, since they have nothing to move when 
they expand. Therefore, this process can be dealt as two gasses making free expansion independently. 
Then the entropy changes of the two gasses are given by   

€ 

ΔS1 = xnR ln V
xV

 and ΔS2 = 1− x( )nR ln V
1− x( )V

 

and the total entropy change 

€ 

ΔS = ΔS1 + ΔS2 = xnR ln V
xV

+ 1− x( )nR ln V
1− x( )V

= −nR x ln x + 1− x( ) ln 1− x( )[ ] 

 
As seen from the figure above, 

€ 

ΔS ≥ 0 , where ΔS = 0 at x = 0 and = 1, i.e. with one gas and no 
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for 
two different ideal gasses. Since mixing two different gasses is an irreversible process.  

0

0.4

0.8

0 0.5 1

Entropy diffeence for mixing

Δ
S 

fo
r m

ix
in

g 
in

 a
rb

itr
ar

y 
un

it

x



Content of this course — today’s lecture
Lecture 1: —Chapter 1. Introduction

                 —Chapter 2. Temperature and zeroth law of thermodynamics


Lecture 2: —Chapter 3. Gas laws


Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes


Lecture 7: — Mock exam I with Dr. Tress


Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 


Lecture 12: —Mock Exam II with Dr. Tress

Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)


Lecture 14: —Final review and open questions



9. Thermal machines

• 9.1 Thermal machines/Heat engines


• 9.2 Carnot cycle 


• 9.3 Refrigerators, Air Conditioners 


• 9.4 Heat pumps


• 9.5 On the impossibility of perpetual motion machines


• 9.6 Stirling engines, Diesel engines, Otto engines



9.1 Heat engines



General consideration : Why two reservoirs ?

isolated systemTonightexperimeaente
"Perpetual motion machineO ⑧ 2nd kind"

-engine- ar Problem: 2nd law TD

Q is fully converted
into cer



Consider isolated system composed of
engine + heat res . (Unio.

Astotal = Jastakeofaz

to
&

Asojeugiae inconsistent with 2nd law : AStotal 70

Equivalent formulationof 2nd law :
A portical motion machineof the 2nd kind doesnot
exist

.



How can we make a thermal machine cook ?

111(((/at reservoir
- isolated

Ha engine+
reservoir/

engineO-wG + reservoir?

Q2
-second

11 1 1 I lweat reservoir
2

TzTs



watin headdi
I
2nd law

: Q T

↳
-Elicies



Boundary condition :) . (1) ->

--
= e = 1- 1-
~

weg
. E does not make sense

Positive e : 1- must be pos. T Te
OCE1

Bestpossible engine , compatible with2nd law:
E = 1-E only for revesibleproce



=> T
,
& T2 determine of a engine.

Caveats : A idealised assumption to have recessibleproc.
* in reality mostifnot all macroscopic proc.

are irrecessible

* high s of 1- in reality not advivable
1

* Still thermal madives are important to
theoretically understand of how to

optimise theiroficiencies.



•Thermal machine is a TD system if it performs a heat transfer 
between two thermal baths 


•allowing for mechanical work being done by a 
system on the environment and vice versa

•by means of a machine that periodically passes 
though the same state (cycle of distinct processes)


•Equivalent formulation of 2nd law of TD: Perpetual motion 
machine of the 2nd kind does not exist (as Entropy change 
would be negative)

Summary 9.1 — Heat engines



•A thermal machine has the following general 
set up: Heat taken from hot reservoir, Work 
conducted on environment, heat given back 
to cold reservoir

•Efficiency of heat engine smaller than 1:

Summary 9.1 — Heat engines

•Best possible engine, equality for reversible 
processes only

•Note that in nature most (makroscopic 
processes) are irreversible (friction) —> 
reducing epsilon

<latexit sha1_base64="jCS6FVOJ4K3/L1flZFDJAwFcQ2I="></latexit>
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9.2 Carnot cycle



























Summary 9.2 — Carnot cycle



Summary 9.2 — Carnot cycle

•Summed work during adiabatic processes is zero, thus the total work is the sum of the work 
during isothermal processes: 

•Efficiency of Carnot process is the maximum efficiency allowed by second law of TD, given 
by (T1>T2):

•Theoretically idealised engine (irreversibility and friction, isothermal processes require 
infinitely slow processes, no perfect insulation, non-ideal gases, no start-up and shutdown 
accounted for)



9.3 Refrigerators and Air conditioning







9.4 Heat pumps



9.5 On the impossibility of perpetual motion machines





•Operation of refrigerators, ACs and heat pumps are the reverse of a heat engine 
transferring heat from a cool to a hot environment by work done on the system. 


•—> lower and upper limits for the integration of heat and work must be 
exchanged


•—> signs of heat and work must be flipped


•Efficiency of these machines:

<latexit sha1_base64="dQEjXPdYwcbrovNkrZG8Qj2oTsA="></latexit>

✏heatpump =
thermal heat put into hot heat reservoir T = T1

total work given to the heat pump
=

T1

T1 � T2

•No “miracle” perpetual motion machine possible with putting together one Carnot 
engine and a reversed one: irreversibility and friction, non-ideal gases, no perfect 
insulation, isothermal processes hard to achieve etc.

Summary 9.3-9.5 — Refrigerators, heat pumps, perpetual motion machines



Experiment 133: Stirling engine

• This engine has good efficiency, 
approaching 40% nowadays, while 
the efficiency of an internal 
combustion engine for automotive 
use reaches 35% for gasoline and 
42% for diesel.

• Drawback is that is not very 
responsive to heat change, not 
useful for cars (for changing speed)

The Stirling engine was developed in 1816 by Robert Stirling, a Scottish minister. 
Stirling patented his design for a heat engine as an alternative to the steam engine, 
to have greater efficiency. The Stirling engine operates on a closed-cycle process 
that uses a fixed amount of gas (such as air or helium) which is alternately 
compressed and expanded at different temperatures, resulting in a net conversion of 
heat energy to mechanical work.



9.6 Stirling engine, Otto engine, Diesel engine

piston 1
piston 2

external 
heat


source

external 
cooling

source, 
i.e. air

TL



•Realistic construction of Stirling engine: two cylinders are 
placed in an angle of 90 degrees against each other, then 
the relative motion of the two pistons can move the wheel 
attached to both pistons and cylinders

•Advantages of the Stirling engine


•High Efficiency, 


•Flexibility in Fuel Sources, 


•Quiet Operation, 


• Low Emissions, 


• Longevity and Low Maintenance




•Realistic construction of Stirling engine: two cylinders are 
placed in an angle of 90 degrees against each other, then 
the relative motion of the two pistons can move the wheel 
attached to both pistons and cylinders

•Advantages of the Stirling engine


•High Efficiency, 


•Flexibility in Fuel Sources, 


•Quiet Operation, 


• Low Emissions, 


• Longevity and Low Maintenance


•Disadvantages of the Stirling engine


•Slower Response Time, 


•Heat Exchanger Challenges, 


•Start-Up Time, 


• Limited High-Temperature 
Applications

Regenerator



















•Stirling engine: two isothermal and two isochoric processes (e.g. used for 
cryogenic cooling, same efficiency as Carnot, quiet, low emission but complex 
design, low-power-weight ratio, limited high-T use)

•Otto engine: two adiabatic and two isochoric processes (e.g. often used in cars, 
high power-to-weight ratio, fast response —> quick acceleration, low noise and 
vibration but lower efficiencies, higher emissions, potential overheating)

•Diesel engine: two adiabatic, one isochoric and one isobaric process (higher fuel 
efficiency, longer life time, but noisier and slower response, challenging start at 
low T)

•Efficiencies are lower than that of Carnot (except for Sterling).

Summary 9.6 — Stirling engine, Otto engine, Diesel engine



Conceptual Questions:
•What is a perpetual motion machine of 2nd kind?


•What is a thermal engine and what is its efficiency? What is the maximum possible 
efficiency for a reversible process


•How does a heat pump work?


• The oceans contain a tremendous amount of thermal (internal energy). Why, in general, is it 
not possible to put this energy to useful work?


•Can you cool the kitchen in summer by leaving the fridge door open? Explain.


• Efficiencies are defined differently for heat pumps and ACs, how and why?


• You are asked to test a machine that the inventor calls an “in-room AC”, plugged to 
electricity, but otherwise with no connection to outside. How do you know that this 
machine will not cool down the room?


•Which of the following possibilities could increase the efficiency of a heat engine or a 
combustion engine


• increase the T of the hot part and decrease the T of the exhaust

• increase or decrease the T of both hot and exhaust part by same amount

• decrease T of hot part and increase T of the cold part

??



Up next…
Lecture 1: —Chapter 1. Introduction

                 —Chapter 2. Temperature and zeroth law of thermodynamics


Lecture 2: —Chapter 3. Gas laws


Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes


Lecture 7: — Mock exam I with Dr. Tress


Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 


Lecture 12: —Mock Exam II with Dr. Tress

Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)


Lecture 14: —Final review and open questions


