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•What is the first law of Thermodynamics of a closed system? 


•Energy conservation: change in internal energy is the heat added to the system 
minus the work done BY system (W=P𝚫V):


•How is first law modified for different thermodynamic systems (other than closed)?


• isolated: no heat and work transfer, Q = 0, W = 0 —> 𝚫Eint = 0


• adiabatic: Q = 0, 𝚫Eint = - W


•open: matter exchange possible described by chemical work C: 𝚫Eint = Q - W - C


•Which thermal processes for gas (to change its state) do you know?

Recap… Lecture 5, First law of TD
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
Thermodynamic (5th week) 
Thermodynamical State 
A thermodynamic state is described by a set of state variables. Examples of state variables are, P, V, 
T, number of moles,  etc. They are uniquely defined, independent of how the system arrived at 
that particular state. As seen later, heat or work are not state variables since they depend on how the 
system reached the particular state. Once a sufficient numbers of variables have bees specified, all 
other variables are uniquely determined. The number of variables needed to specify the system 
depends on the system.  

Example: System of an ideal gas 
The gas law for ideal gas  shows that a set of three variables out of four, i.e. P, V, T, and N 
determines the system.  
 
The First Low of Thermodynamics 
Extending the concept of the energy conservation to the thermodynamical system. In a closed system, 
we have  

ΔEint =Q−W  

€ 

ΔE int; Change of the internal energy, Q: heat into the system, W: work by the system 
In the isolated system, no energy transfer can occur, i.e. Q = 0 and W = 0, hence 

€ 

ΔE int = 0. 
 

Thermal Processes 
There are the following four thermal processes for gas to change its state: 
 Isothermal (ΔT = 0): while the state changes, the temperature is kept constant.  
 Adiabatic (Q = 0): process with no heat, i.e. thermally isolated system or a very fast process.  
 Isobaric (ΔP = 0): while the state changes, the pressure is kept constant. 
 Isovolumetric (ΔV = 0): while the state changes, the volume is kept constant. 
 
Molecular Specific Heat 
Recall the specific heat, c, for solid and liquid: 

€ 

Q = mcΔT  
where the heat Q is in cal,  m is the mass in g and ΔT the temperature difference in degree Celsius. 
For the gas, two more variables, volume (V) and pressure (P), are needed in consideration. Therefore, 
two kinds of specific heats are introduced: 

€ 

cV : specific heat at constant volume 

€ 

cP : specific heat at a constant pressure.  
and they are fairly different.  
 

€ 

E int

€ 

PV = NkT
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•How can we compute the internal energy for isochoric/isovolumetric 𝚫V = 0 processes? 


•How for isobaric 𝚫P = 0 processes?


For ideal gas: Δ!int = !!VΔ! 

Note that here any change from one thermal state to another can be made as 
combinations of isochoric and isobaric processes, with Δ!int = !!VΔ!!


•How for isothermal 𝚫T = 0 processes?

•Δ!int = 0 (if ideal gas) —> ! = ! = !Δ!!


•How for adiabatic Q = 0 processes?

•  Δ!int = - !!
•For ideal gas:!!!!!!!!!!!!!!!!!!—>!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!

Recap… Lecture 5, The first law in different thermal processes
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Measured values show that 1) some of the degrees of freedom are not "active", and 2) decreases with 
temperature to

€ 

nf = 5 then to 

€ 

nf = 3 for different gas molecules, i.e. gasses behave like a monatomic 
molecule at a very low temperature. These observations are related to the foundation of quantum 
theory.  
 
Change of internal energy for ideal gas 
For isovolumetric process, we have Δ! = 0, thus 

ΔEint =QV = nCVΔT  
and for isobaric process 

ΔEint = nCPΔT − PΔV  
For ideal gas, we have 

€ 

CP −CV = R  and ΔV = nRΔT P , thus  
ΔEint = n CV + R( )ΔT − nRΔT = nCVΔT  

i.e. the change of internal energy for a temperature change of ΔT is given by  
ΔEint = nCVΔT  

for both isovolumetric and isobaric processes. For ideal gas, any change in two thermal states can 
be made as combinations of Isovolumetric and isobaric processes, the change of internal energy for a 
temperature change of ΔT for any processes is given by  

ΔEint = nCVΔT . 
Adiabatic Process 
As mentioned, for a defined gas, among three state variables, T, V and P, there are only two 
independent variables. Let us use T and V, leading to   

€ 

ΔE int =
∂E int
∂V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T
ΔV +

∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V
ΔT . 

for a very small change of the state, i.e. Δ! ! ≪ 1 and Δ! ! ≪ 1, and also  

! = ! ! !"
!!!!!

!!
≈ ! !! !"

!!!!

!
= !Δ! 

The first law of thermodynamics gives  

€ 

ΔE int =Q −W =Q − PΔV . 
By combining the two equations, we obtain  

€ 

Q = PΔV +
∂E int
∂V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T
ΔV +

∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V
ΔT . 

For ideal gas, recalling that the internal energy depends only on the temperature, i.e. 

€ 

∂E int ∂V( )T = 0 
and the definition of 

€ 

CV , it follows that  

€ 

Q = PΔV + nCVΔT . 
In an adiabatic process, no heat is allowed. This can happen when the system is thermally well 
isolated or the process happens very fast. Let us consider a very slow (quasistatic) process where the 
state of ideal gas is adiabatically changed from A:

€ 

Va,  Pa,  T0( )  to C:

€ 

Vb,  Pc,  Tc( ) , i.e. C has the same 
volume as B.  Since there is no heat involved in the process, Q = 0, thus  

€ 

PΔV + nCVΔT = 0 . 
Using 

€ 

PV = nRT  for the ideal gas, we obtain 
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Content of this course — today’s lecture
Lecture 1: —Chapter 1. Introduction

                 —Chapter 2. Temperature and zeroth law of thermodynamics


Lecture 2: —Chapter 3. Gas laws


Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes


Lecture 7: — Mock exam I with Dr. Tress


Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 


Lecture 12: —Mock Exam II with Dr. Tress

Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)


Lecture 14: —Final review and open questions



8. Entropy and the second and third law of thermodynamics

• 8.1 Reversible and irreversible processes


• 8.2 Entropy


• 8.3 The second law of TD


• 8.4 The third law of TD


• 8.5 Entropy and the first law of TD


• 8.6 Statistical interpretation of entropy



8.1 Reversible and irreversible processes
Sofar : all thermal processes from Chap.arete
PA

isothermal expansi·B DA-B =)
Pd- UB

o==RTlo
CdoneBgas on environment

Since To = coust -> Alt =0

↳ Q-B = Wa-
Isystemis taking in heat)



Once system is at B , it can do the same

path back to 1 lisothermal compressiv)
Cra = -Wati Quea =-Qa-B

Any process that can be recessed by changing
signs of Q & W is revessible

Tot



-
-
gas expands

into

entire voluc

Us , Pr ,To

Thermal isolatio : Q = 0

Nowork : W = 0

↳ AEiut = 0-T=cons

Because Q & W are cer
,
this process cannotbe
recessedby changing the si



=> Any process that cannot be recessed bychanging
the sign of Q & W is called irrecessible

Impossible togo back to the initial state

"Arrow of time" camer in :

A B
·->

"Special st physics laws , recessibility in
time is given.



Experiment 339: Joule free expansion

• The identical temperature of the two 
balloons is the reference temperature.

• Connect the two balloons using 
valve 2 at temperature (T): For an 
ideal gas, we expect no T change 
because W and Q equal to zero

• In reality: In balloon 1, an increase in 
temperature of +T is observed. In 
balloon 2, a decrease in temperature of 
-T is observed, because gases are not 
ideal.

• Initially, both balloons are filled with air. Then, the air is evacuated from balloon 1, 
after which valve 1 is closed, and the vacuum pump is stopped.

• Wait for the temperatures to balance between the two balloons. (This equilibrium can 
be accelerated by heating balloon 1 with hands.)



•Any process, that can be reversed by changing signs of Q and W, is reversible.


•Any process, that cannot be reversed by changing signs of Q and W is irreversible. 
“Arrow of time comes in” 

Summary 8.1 Reversible & Irreversible thermodynamic processes
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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (6th week) 
Entropy and the second and third Laws of Thermodynamics 
Reversible and irreversible process 
Consider an isothermal expansion of an n-mol ideal gas at 

€ 

T = T0  changing its state from 

€ 

A Va,  Pa,  T0( ) to 

€ 

B Vb,  Pb,  T0( )  through a quasi-static path (see Lecture Note Thermodynamics 5th 
week). This process follows the line given by 

€ 

PV = nRT0  on the V-P plane. Since there is no 
temperature change, 

€ 

ΔE int = 0 and from the first law of thermodynamics, Q = W where work W is 
given by  

€ 

WA→B = PdVA
B∫ = nRT0

dV
VVa

Va∫ = nRT0 ln
Vb
Va

 

 thus 

€ 

Q
A→B

= nRT0 ln
Vb
Va

. 

Once the system is at the state B, we can make the system to follow the same path back to A by 
applying 

€ 

−QA→B  and 

€ 

−WA→B, just reversing the sign. Any process that can be reversed by changing 
the sign of Q and W is called reversible.   
 Now consider a process where a thermally isolated container with a volume 

€ 

Vb is divided into 
two by a tight thermally isolating wall. One section is filled with an n-mol ideal gas at 

€ 

A Va,  Pa,  T0( ) 
and the other vacuum. Now we remove the wall and let the gas to expand into the whole volume. 
Since the container is thermally isolated, Q = 0, since gas expands without moving anything, W = 0. 
The first law of thermodynamics leads to 

€ 

ΔE int = 0. The final state is 

€ 

B Vb,  Pb,  T0( ) . Since the 
internal energy depends only on temperature, no change of temperature in this process. The process 
cannot be shown as a quasi-static path on the V-P plane. Clearly, this process cannot be reversed by 
simply changing the sign of Q and W. Any process that cannot be reversed by changing the sign of Q 
and W is called irreversible.    

 

19/



8.2 Entropy

Entropy S TT/K]

Reversible processes from AS :=
state A + B

,
0

,
T

In differential form : &S
↳ As=
Note : Entropy S is a stak variable.



A-B :AS
AEint = O

lognlog
A -D + B :

A- D : AU-0 ; Q
= nGAT isocoric



As
=nG lognGlog

D+ B : AP =0 isobanic

As lo
Cr+R(ideatgas)

= n((u + R) log
A-D- B

AS = nClog +n + R) log



=onlog
because log() = - og(2)

AS = nR log Ideal
gas

law :

nRTo
= PAUA =PBUB latA,B)

nRTD = PBUA latD)
=> AS =nRlogun = nRlog
=> ASA-B = ASA-D-B ~ Sis

a state variable
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= O

common
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&Sen= As die to heat exchangewith environme

entropy balance

&System
= &Sena + & Spod equation
2

total entropy Entropy producti
drange in our
system e.g.fridiou, visons

forces
quantifies irrecessibilityofpr.



For irrecessibleprocesses :

easaQ =0
& dSeur=O
LI,

For recessibleprocesses : &Spod =0

=> &Ssystem = &Seur=
In general :

&Ssystem =Sena
with equality

=> onlyfor recessible
processes.



Recessible processes : Irreversible processes :

Assysh = (Aer ASsyshir = ASear
= ASeur because of internalS

producti
For the same initialInfinal stakes, for the same

AS :

(aer
A sero is the largestfor a revessibleprocess ;
For a irrecessible process : ASee is smaller becaused

entropyprod.



Example : Process withfridi
irrecessible process
S is internally produce

This means that for the same total drange in
S
(

less entropy needs to be transferred
oi heat exchange with environmen
->Sir smaller than in an recessible



•Entropy S is a state variable (independent of the path of the process), important for 
distinguishing between reversible and irreversible processes


•dSsystem =  dSenv + dSprod;   

•dSenv: change of entropy due to heat exchange with environment

•dSprod: entropy production due to dissipation within the system, “measure 

for disorder”


•Entropy due to heat exchange with environment


•dSenv in isothermal processes


•dSenv in isochoric processes


•dSenv in isobaric processes

Summary 8.2 Entropy
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Entropy 
For a reversible process, entropy changes of a system, ΔS, for a change of its state from A to B with 
heat Q and at a constant temperature T, is given by  

€ 

ΔS =
Q
T

 

where the temperature is in Kelvin. If the temperature of the system is not constant, ΔS is given by 

€ 

ΔS = dSA
B∫ =

˜ d Q
TA

B∫  

where the integral follows a quasi-static path from A to B. Note that 

€ 

Q T  of infinitesimally small 
step on the path is given by 

€ 

˜ d Q T . It can be shown that ΔS is independent of the path, unlike the heat. 
Thus the entropy, S, is a state variable such as volume and temperature and ΔS = S(B) − S(A). 
 We demonstrate the fact that ΔS does not depend on the path, by calculating ΔS explicitly for a 
change of state A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  for an n-mol ideal gas in two different reversible 
paths. As demonstrated above, the state from A to B can be achieved through isothermal expansion, 
where heat is given by   

Q = nRT0 ln
Vb
Va

. 

Since the temperature does not change in the process, the entropy change is then given by  

ΔSab =
Q
T0
= nR lnVb

Va
. 

We then consider reaching B in two steps, first decreasing the pressure under constant volume to 
reach D Va,  Pb,  Td( ) , followed by increasing the volume under constant pressure (see again Lecture 
Note Thermodynamics 5th week). For the heat, we have: 

A→D Qad = nCVdT  and D→B Qdb = nCPdT  
which lead to  

ΔSad = nCV
dT
T

= nCV ln Td

T0
T0

Td∫  for A→D and ΔSdb = nCP
dT
T

= n CV + R( ) lnT0

Td
Td

T0∫  for D→B . 

The total entropy change is given by  

Δ ʹSab = ΔSad +ΔSdb = nCV ln
Td
T0
+n CV + R( ) lnT0

Td
=nR lnT0

Td
 

Using the gas low, PV=nRT, we obtain,  
T0
Td
=
VbPb
VaPb

 

which follows that  
T0
Td
=
Vb
Va

 

showing that the two different paths give same ΔS. Since Va <Vb , we have ΔS > 0. 
 Considered paths can be indeed reversed, i.e. C→A, by changing the sign of Q and W, with 
negative entropy −ΔS. Therefore, entropy change for a loop such as A→B→C→A,  

€ 

ΔSab + ΔSbc + ΔSca =
˜ d Q
T∫ = 0  

i.e. it is always 0. We conclude that ΔS does not depends on the path, thus S is a state variable.  
 For irreversible process, it turns out  
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Entropy 
For a reversible process, entropy changes of a system, ΔS, for a change of its state from A to B with 
heat Q and at a constant temperature T, is given by  

€ 

ΔS =
Q
T

 

where the temperature is in Kelvin. If the temperature of the system is not constant, ΔS is given by 

€ 

ΔS = dSA
B∫ =

˜ d Q
TA

B∫  

where the integral follows a quasi-static path from A to B. Note that 

€ 

Q T  of infinitesimally small 
step on the path is given by 

€ 

˜ d Q T . It can be shown that ΔS is independent of the path, unlike the heat. 
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Q = nRT0 ln
Vb
Va
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Since the temperature does not change in the process, the entropy change is then given by  

ΔSab =
Q
T0
= nR lnVb

Va
. 
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ΔSad = nCV
dT
T

= nCV ln Td

T0
T0

Td∫  for A→D and ΔSdb = nCP
dT
T

= n CV + R( ) lnT0

Td
Td

T0∫  for D→B . 

The total entropy change is given by  

Δ ʹSab = ΔSad +ΔSdb = nCV ln
Td
T0
+n CV + R( ) lnT0

Td
=nR lnT0

Td
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T0
Td
=
VbPb
VaPb
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Vb
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 Considered paths can be indeed reversed, i.e. C→A, by changing the sign of Q and W, with 
negative entropy −ΔS. Therefore, entropy change for a loop such as A→B→C→A,  
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i.e. it is always 0. We conclude that ΔS does not depends on the path, thus S is a state variable.  
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O

Creversible processes)



•Entropy due to heat exchange with environment


•Reversible: dSenv > (or <) 0


• Irreversible (e.g free expansion process: dSenv = 0)


•Entropy production due to dissipation within a system


•Reversible: dSprod = 0


• Irreversible: dSprod > 0 (e.g. free expansion of gas at T=const and 
Q=0, but Ssystem not necessarily zero)

Summary 8.2 Entropy

 3 

ΔS =
!dQreversible

TA

B
∫ >

!dQirreversible

TA

B
∫  

For the state change of A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  discussed above, indeed we have  
!dQreversible

TA

B
∫ = nRT0 lnVb

Va

> 0 and 
!dQireversible

TA

B
∫ = 0 . 

Therefore, we can write, 

 

€ 

ΔS ≥
˜ d Q
TA

B∫  

where the equal sign holds only for reversible processes, i.e. entropy change is given by  

ΔS =
!dQ
TA

B
∫  

only for the reversible process. If we consider a thermally isolated system, no heat for any process, 
i.e. 

€ 

ΔS ≥ 0 .  
 
Entropy Second and third laws of thermodynamics 
The second law of thermodynamic is: In any process in which a thermally isolated system goes from 
one state to another state, the entropy cannot be decreased; i.e. 

€ 

ΔS ≥ 0 . 
The third law of thermodynamic is: The entropy of a system converges to a constant value 

€ 

S0 = 0 for 

€ 

T →0 independent of all the other properties for the particular system.  
 
Entropy and the first law of thermodynamic 
For reversible processes with a fixed temperature, T, heat, Q, can be obtained from the change of the 
entropy, ΔS as 

€ 

Q = ΔST  or for an infinitesimally small path, 

€ 

˜ d Q = TdS . Then, The first law of 
thermodynamics can be written as  

dEint =Q −W =TdS − PdV  
where all the terms consist of state variables, not depending on the path. Therefore, it is valid even 
for irreversible process. One may summarise as: 
 

€ 

˜ d Q = TdS   only for reversible case 
 

€ 

˜ d W = PdV   only for reversible case 
 

€ 

dE int = ˜ d Q − ˜ d W  always valid  
 

€ 

dE int = TdS − PdV  always valid 
For irreversible process, we have 

€ 

TdS ≥ ˜ d Q, thus 

€ 

PdV ≤ ˜ d W .  
 
Statistical interpretation of Entropy 
Once we obtain, 

€ 

dE int = TdS − PdV , temperature, T, can be given by  

€ 

1
T

=
1

∂E int ∂S( )V
=

∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

 While deriving the Boltzmann constant during the Thermodynamics 3 lecture, we encounter an 
expression: 

€ 

dlnΩ E( )
dE

=
1
kT

 

-



8.3 The second law of thermodynamics

SASsyske =0 equality onlyfor
L reversible processQ=0

&Seur = O

ASsyst = ASprod
Alternativeformulation : heatflows spontaneously onlyfrom
a holler to a cooler body/syse



8.4 The third law of thermodynamics

himS = So

In classic TD : So is just a cost

Statistical TD : So =0



8.5 Entropy and the first law of thermodynamics

With entropy , we can re-write thefirst lawTD :

dEint = dQ-dW 3 ds=-> dEmt =TaS-Pdr 2
always valid

But : dW = PdO Cirreversible+ recessible

dQ =Tas Youly trie processes)

for recessibleprocesses
Recall : dS = dSpod + & Seur IdS can have an irred.

if asprod >0 (irrer . process corp)
dQ + TdS

datPar



Interpretation :

In a irrecessibleprocess, portion of energy added
to a system (in form of work or heat) is irrecessibly
converted into interval energy , manjesting as internal
entropy productio
↳ Process is dissipating energy with less work

outputI more heat being added.



Note : dEint = TaS-Par

looks like a total differential of Eint IS, 0)
dEint=ntas

Camparing both equations :

Tent ; Pe
Intensive variables (T

,
P) are conjugatesof

extensive variable (S , U)



I

ridig : do
=0

, no work
= dSenut-

-> dEint = TaS = dQ aSprod

- aspod =O Centropy balance equ)
Heat transfer between simple system
Y environment : reversibleprocess

Total leat exchange : Q=Tas



consider recessible displacement
ofthe pistons (noproduction

adiabatic : dQ = 0

↳ as =0

=> dEint = -PaU=- (recessible adiabalic pr.)

w = Spar



dEint = TdS-PdU=

dQ-dat

=>Seur +TdSpod-PdU=

-dat
Recessible displacementof pistons : &Spron =0

Then &W =PdU ; dQ =TdS

Q = Saa =STAS
w= Spar



an isolated
-

&

entropy production

Question : What is the

entropy in thermal equilibrium?
Tr T

S = Si + S2 (excusive quality)
Ent = Einf, 1 + Eint , 2



Also : &S = &Sn +&S ; dEint = dEinfi + dEinti2
(1)Since system is isolated : dEint

=0- dEint = -dEiatic
No work done (rigid) : dW=0 ; dW = 0 ; dW

= O

First law : dEintin = dQnj dEintiz = dQn
* dQ = - dQ2

Each subsystem is a rigid,simple system : no spod

↳ dS= &S=
↳ dS

,= & Ste =

-dint
,
1

-
From (0) : as= dent

,
1)

2 I : dEint, 1



Em = F- In thermal equilibritie :
T = Tz

=>
in

= 0
thermal equ .

conditiofors
in classic TD

Ire-call : Statistical TD : I
↳Sof an isolated system is
maximum at thermal equilibritwaxmisaliof microstates

in thermal equil.)

Question2 : What is the entropy production ?
Systemisolated : &S-0 And law)

dSeur = u

From(3) follows : &S =&Sprod =(F -)dQ = 0(4)



Not : if T. T asered #O evenif asprod, 1 =0
&Sprod

,
z
= 0

↳ asprod # dSpod
,
1
+ & Sprodic

= Entropy producin ist an
extensive

quantity.

Implicationfrom 14) :

Tofulfill End law (" 201) : Th > Th audda
Lor vice versa)

Equivalent formulation of 2nd law :
Heat tranger mustgofrom

not to cold in an

isolated system.



①p are in thermalegt

Question 1 :What is S

Pr Pr
at medianical equilibriume
(P =Pr) ?

u = u
.

+0 (extusive qu .)
Since U= coust ; du

=0 = dVi =dOz

Eint : Eint = Eint
.
1 + Fintic & dEintic = - dEint,

since dEin = O

1st lawr : dEut = dQn = dWs ; dEintiz = dQn-dWz
Because Tn = Te =T



dEinti = TaS
,
-PdU ; dEint,2 = TAS =PdUz

↳ as = (dEimn +PndU) ; &Sz =Id +Peda)
II

Total &S = &S + &S :
- dEint

,
1

=>dU

as=( + PdO-tm-Pd)
as = # (M -3)du, (5) (dO

== (P-P) in mechanical equ.:
Tr = Pz

= O mede. equilibrium conditionforS
S in al isolated system is maximum
at mechanical equit.



Question?: What is the S production ?
Isolation & 2nd law : &Sear =0 ; &Sz0

Frau 15) :

ds = &Spon =#(P-B)drz0
Tofullfil 2nd lau : Pr > Per &&U O (or vice

versal

2 Examples show : Entropy is produced whenever
a transportof heata work occus
within an inhomog , isdated system
with a Tor Pgradient.



Stationaryprocess :
② State varibles do not

change with time
= The & Siz Coust

Question :for a stationary process,show that
dQ = dQo = dQnz = dazo

In stationary case :&S
,

=0
, dS

=0



The blocks are simple, rigidsystems:Spodin =0
dSprod

,
z
=O

=> as,=da =0 do =d

as =0 dQdQ

=> dRon = dQz
= dQ2o



•Entropy and the first law of TD:


•Only for reversible processes:


•Second law of Thermodynamics: each thermodynamic system has a state variable 
called entropy S. The total entropy of thermally isolated/adiabatic system (Q=0) 
cannot decrease over time: ΔS ≥ 0


•—> Entropy is not conserved for most natural processes (unless they are 
fully reversible)


•Third law of Thermodynamics: The entropy of a system converges to a constant 
value S0 = 0 for T →0, independent of all the other properties for the particular 
system. 

Summary 8.3-8.5 Entropy & the three laws of Thermodynamics

For irrev . processes : Sprod +0

but increases
-



8.6 Statistical interpretation of Entropy

Recall from Chapter5 :g
Chapter 8 .

5 : dEint
= TaS-Par

= 4

Put (2) into (1) :

ISde
S = klogt



 4 

where, k is the Boltzmann constant, and Ω(E) is the number of states with energy E. as an thermal 
equilibrium condition. This leads to  

€ 

k
dlnΩ E int( )
dE int

=
∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

By integrating the both sides, we identify  

€ 

S = k lnΩ 
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is 
given by the formula, 

€ 

S = k lnΩ, where Ω is the number of microstates associated to the particular 
macrostate.  At 

€ 

T = 0, there is only one state. Evolution of a thermal system is in the direction from 
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.    

 
 
Entropy of free expansion a la statistical mechanics  
We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
placed in a container with volume 

€ 

Va . In that volume, there are m possible states that the gas 
molecule can take. The number of possible configuration taken by the N molecules, Ω, is then given 
by 

€ 

Ω=mCN =
m!

N! m − N( )!
 

and entropy by    

€ 

S = k lnΩ = k ln m!
N! m − N( )!

 

Since we are considering a macroscopic system, both m and N are large, where 

€ 

lnn!≈ n lnn − n  
(Starling's approximation) can be used. This leads to  

€ 

S = k ln m!
N! m − N( )!

≈ k m lnm − N lnN − m − N( ) ln m − N( )[ ] .  

Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and 
the following approximation holds: 

€ 

m lnm − N lnN − m − N( ) ln m − N( ) = m ln m
m − N

− N ln N
m − N

≈ m ln 1+
N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − N ln

N
m
1+

N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

≈ N − N ln N
m
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We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
placed in a container with volume 

€ 

Va . In that volume, there are m possible states that the gas 
molecule can take. The number of possible configuration taken by the N molecules, Ω, is then given 
by 
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N! m − N( )!

 

Since we are considering a macroscopic system, both m and N are large, where 
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(Starling's approximation) can be used. This leads to  
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S = k ln m!
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≈ k m lnm − N lnN − m − N( ) ln m − N( )[ ] .  

Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and 
the following approximation holds: 
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m lnm − N lnN − m − N( ) ln m − N( ) = m ln m
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− N ln N
m − N
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N
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N
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Statistical interpretationof the second law:

In a thermally isolated system : AS O

-> entropy must increase Ispod) with time for
-> from more order Jewer) to less ordat

caust

( more 2)
-> with time

, a thermally isolated system can only
keep the same amount or less order
-> because higher #of microstates implies a largesP
o a macroscopic stake --S must increase

-



Statistical interpretation of the third law:
lim's = 0 Since 8 = klogt
FoOk

↳ 2 - 1 1

state of "perfect order
with only one possible microstate.



Question : How wide entropy is produced ?

!
widees over whichNgaspartides
can be distr. can be distribu



Analyse : how many possibilitiesfor distributingNparticles?
B1 : S = klogz
Frou combinatories :

[()= Sterling'sformula :
In (x ! ) = xImx = x

# of combinations

if Npanlides
are distributed
over m spots
=S =! = k((m ! - In(m-N)!)
Ek[mInm -m- ( -N)(m(m -N) +(-x) -

- NIN+] =



=> S = k [minm - (m -N) (n(m -N) = NGN]
= knm-m-N)(on-N)-)
-- -

= k(-m In +N(n
-

= kB[-m(n(1-) +N(n(-1)]
Y↳-0 ↳

abes are infinitesimallysmall negligib~m-**

Taylor approximation : In(1-x)Ex- ...

S =! -m)-)+



=> S = kB [N +Nin()]
m
+x =0 S -X

But: between B1 (m) & B2 (2m)

= AS = S(2m) - S(m)=N
--N

= kgN(In2m-N-Inm+)
EkBN In = koNin2

same as

= koN In as U =2 for an isthe
expansionproc



S change in a revesible,otthermal expansion is a valid
approximation for an irrecessible free expansion process,
because S is a statefut, & conditious one "similar



•The entropy S of a particular macro state of a TD system is related to the number of 
microstates on a particle level: 


• Implications of the second law of TD: An increasing entropy ΔS ≥ 0 of an adiabatic system 
(Q=0) implies that a system evolves from more order (lower Omega ) to equal or less order 
(equal or higher Omega) with time (equality for reversible process only).


• entropy increase is purely driven by higher probabilities of certain 
combinations of microstates


• heat flow from hot to cold object: much more microstates, thus higher 
probability, for this scenario then for the reverse process


• Implications for the third law of TD:  for T—>0 also S—>0, this would imply Omega=0, only 
one micro state, meaning a system would be maximum order


•Entropy change for free expansion in an thermally isolated system: 

Summary 8.6, Statistical interpretation of entropy
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and 

€ 

S ≈ k N − N ln N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

When the volume of the container is increased to 

€ 

Vb , the number of possible states in the container 
also increases from m to 

€ 

xm , where 

€ 

x =V2 V1 . Entropy is then given by 

€ 

ʹ S ≈ k N − N ln N
xm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and entropy change  

€ 

ΔS = ʹ S − S ≈ kN ln x  
Converting it to the mole number, n, and universal gas constant R, it follows that  

 

€ 

ΔS ≈ nR lnVb
Va

 

in agreement with the thermodynamics calculation.  
 
Special demonstration: Entropy of mixing 
A thermally isolated container with a volume V is split into two, 

€ 

V1 = xV and 

€ 

V2 = 1− x( )V  where 

€ 

0 ≤ x ≤1, by a thermally isolated wall. They are filled with two different ideal gasses of 

€ 

n1 = xn -mol 
and 

€ 

n2 = 1− x( )n-mole, respectively. Both gasses have a same pressure, 

€ 

P1 = P2 ≡ P , and a same 
temperature, 

€ 

T1 = T2 ≡ T . Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to 
volume-1.  
Since there is no temperature difference between the two regions, the temperature remains constant in 
this process. The two gasses do not provide any work either, since they have nothing to move when 
they expand. Therefore, this process can be dealt as two gasses making free expansion independently. 
Then the entropy changes of the two gasses are given by   

€ 

ΔS1 = xnR ln V
xV

 and ΔS2 = 1− x( )nR ln V
1− x( )V

 

and the total entropy change 

€ 

ΔS = ΔS1 + ΔS2 = xnR ln V
xV

+ 1− x( )nR ln V
1− x( )V

= −nR x ln x + 1− x( ) ln 1− x( )[ ] 

 
As seen from the figure above, 

€ 

ΔS ≥ 0 , where ΔS = 0 at x = 0 and = 1, i.e. with one gas and no 
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for 
two different ideal gasses. Since mixing two different gasses is an irreversible process.  
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Conceptual Questions:
•Why is the first law of TD not sufficient to describe TD systems?


•What is entropy in classic TD and in statistical view?


•How to calculate entropy, if changes of state are irreversible? — replacement by an 
reversible process


• A gas is allowed to expand (a) adiabatically and (b) isothermally. In each process, does the 
entropy increase, decrease of stay the same?


•Give three examples of naturally occurring processes in which order goes to disorder.


•Which statement is true regarding gut entropy change of an ice cube that melts? (a) Since 
melting occurs at the melting point temperature, there is not temperature change so there 
is no entropy change; (b) Entropy increases. (c) Entropy decreases.


• Describe a reversible and irreversible possibility to expand gas isothermally.


•Which do you think has the greater entropy, 1kg of solid iron or 1kg of liquid iron?


• Living organisms, as they grow, convert relatively simple food molecules into a complex 
structure. Is this a violation of the 2nd law of TD?


•  Think of your questions!

??



Up next:
Lecture 1: —Chapter 1. Introduction

                 —Chapter 2. Temperature and zeroth law of thermodynamics


Lecture 2: —Chapter 3. Gas laws


Lecture 3: —Chapter 4. Statistical thermodynamics I: Kinetic theory of gas (slides in previous file)

                 —Mathematical Excursion — Preparation for Chapter 5.


Lecture 4: —Chapter 5. Statistical thermodynamics II (Boltzmann factor, Maxwell-Boltzmann distribution)


Lecture 5: —Chapter 6. Energy, heat and heat capacity


Lecture 6: —Chapter 7. First law of thermodynamics and thermal processes
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Lecture 8: —Chapter 8. Entropy and the second and third law of thermodynamics


Lecture 9/10: —Chapter 9. Thermal machines  

Lecture 11: —Chapter 10. Thermodynamic potentials and equilibria 
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Lecture 13: —Chapter 11. Heat transfer (Conduction, Convection, Radiation)
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