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5. Statistical nature of Thermodynamics II

• 5.1 Microstates and Macrostates


• 5.2 Microstates and thermal equilibrium


• 5.3 Boltzmann factor


• 5.4 Probability distribution of gas speeds


• 5.5 Maxwell-Boltzmann distribution of absolute speeds



5.1 Microstates and Macrostates
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Groupsofmicrostates (like pure ,mixedstates) one
called macrostates
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Energy in box isfixed to Eto = El
,
what are
-
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All possible micrestates:Eto
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The macrostat Eot =E' permits 2 microstates.

Example in TD :

Microstates of gas
: position, velocity , hinetic energy
o eachgas

molecule

Macrostates ofgas : global, macroscopic quantities
side O,T,T

....

setof diff. microstates may lead to same marostate.



All microstates have the sameprobability
Probability of macrostate~ total probabilityof those

microstate leading in that
marostak



5.2 Microstates and thermal equilibrium
Let's now consider two large boxes (with billionsof
atow) isolated fromthe environment
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What is the totalo microstates (in Box 1+2) as
agot of total energy /E
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sim up over
all microstates :CE)r (Es +E) +

2
,
(dE) · 22 (E +EidE) + --- - many possiblities--

+ r(E + E)r(0)
extremecasesfor energy distribute

Example : energy is discrete informof balls

Initiallywat



I e0 .00 ...

Just counting, only physics is dieto Energy per box & ralated
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& IE) : Totalof microstates in box1 & box 2

Now : whichgroups of them are more likely tohave ?
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What are the most likely configurations of microstates ?
3E' can be distributed over the two boxes

1microstate
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In reality, many more microstales possible (not only 3but billions
-> extremely unlikely that allenergy is g atows)

is just on the left or on the right
-> Energy is somehow distributed over the box
-> System is taking on a macroscopic configuraly
that maximises theofmicrostates,since this
corresponds to the highest probabi

Mathematicalformulation:
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Use product rule :
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=>
=> logt))= log(())
Most likely distributionof energies is thatif derivatives
of the log of #of minostales in Box 142 are equal

Relate to TD : the most likely statewould be thermal

equilibrar

logt(e) our assumption, which
will be checked later



•Microstates of gas: 


•Properties, such as position and velocity, of individual gas particles

•Every microstate is equally probable 


•Macrostates of gas: 


•Described by global quantities, such as T, V, P, etc.

•Set of different microstates that lead to the same macrostate

•Probability of macrostate: sum of probabilities of microstates leading that macrostate


•A system takes on that macroscopic configuration which maximises the number of 
microstates (highest probability)


•We think that most likely macrostate may be thermal equilibrium, i.e. two systems in contact 
have the same T (“Boltzmann argument”)

Summary 5.1, 5.2 Microstates, macrostates and thermal equilibrium
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which is the equilibrium condition. In thermodynamics, this means that two systems are at the same 
temperature. Therefore, the temperature is defined as  
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with k being the Boltzmann constant.  
 
Boltzmann Factor 
We consider a small system A in thermal contact with a heat reservoir A', which means A' is much 
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5.3 Boltzmann factor
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5.4 Probability distribution of speeds of gas particlescelocities
-
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This is a Gaussian Jet :
G
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Experiment 391 Planche de Galton (Gaussian distr.) 

Statement of the Phenomenon: The Galton Board is a system invented by Sir Francis 
Galton in the 19th century. It is constructed in three parts:

• a compartment containing metal balls,
• a series of rows of obstacles (horizontal nails),
• wooden compartments at the bottom where the balls can settle.

Observation: When the balls are released from the upper compartment, they fall onto 
the nails and land in the compartments. Each time the experiment is repeated, a bell-
shaped (Gaussian) distribution of the balls in the compartments is observed.



Experiment 391: Planche de Galton (Gaussian distr.) 

https://www.youtube.com/watch?v=Ej0xIqr-RcI 

Why do we always arrive at the same distribution? 

—>In probability theory, there is a well-known theorem about the sum of a 
sequence of N random variables. This is the central limit theorem. It states that 
this sum of random variables converges towards a normal/Gaussian distribution for 
a sufficiently large number of random variables . Thus, this law demonstrates a 
kind of “intrinsic organization in randomness”.

In the case of our experiment, the random variables are the directions taken by the balls 
after hitting a nail. As a first approximation, we can say that these random variables are 
binomial laws whose two possible outcomes are "going left" and "going right.”

The same can be applied for the probability that a gas particle/molecule has a certain 
velocity, also described by a Gaussian distribution.



5.5 Maxwell-Boltzmann distribution of absolute speeds

Compute Flot the probability thatagas particle
has a absolute speed lot

↳ Integrate Probability distr. for o over yad
ruy

recall : o= 0+uy +u?

OX duxdrydiz =dersincdiede-
=4



F(u)du =45do

Maxwell-Boltzmann distributi



Experiment 167:  

Apparatus for the study of the kinetic theory of gases


https://www.youtube.com/embed/4KFSmWcXcH8 

Set-up: tiny balls are brought into 
movement in a cylinder with a 
hole towards a device with 
different compartments
Observation: depending on the 
velocity of the different balls, they 
fall into different compartments in 
the device on the left, showing a 
Maxwell-Boltzmann distribution.
 Each time the experiment is 
repeated, a Maxwell-Boltzmann 
distribution of the balls in the 
compartments is observed.
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③ Mostprobable speed F(r) =0

F(r) =4(v)

=u+ 2-20 .

-
=

maximum

=> ump-m =0 = 1



WATCH: Boltzmann distribution: https://www.youtube.com/watch?v=BdjLEHM6-t4&t=4s 

=

=>
Ump[v] < Vrms



•Boltzmann factor: Probability that a system, open to the Universe, has an energy E:


•Probability that one gas particle has a velocity vector vx, vy, vz


•Maxwell-Boltzmann distribution of absolute velocity of gas particles: 


•Boltzmann argument right, as we confirm result from last week: 

Summary 5.3, 5.4, 5.5 Boltzmann factor and Maxwell distribution

WATCH: Boltzmann distribution: https://www.youtube.com/watch?v=BdjLEHM6-t4&t=4s 
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T being the temperature of the reservoir A', which is also the temperature of A when they are in 
thermal equilibrium, and  
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An important characteristics of a Gauss distribution is that the probability for x to be between  
and  is ~68.2%. Equally for between  and , ~95.4%, and for between  
and , ~99.7%.  
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speeds, the average velocity, 

€ 

v , is given by  

€ 

v = vF v( )0
∞∫ dv . 

Similarly, 

€ 

vrms is given by  

€ 

vrms = v2 = v2F v( )dv0
∞∫  

Using the integrals given in the next section,  

€ 

I2 a( ) = x2 exp −ax2( )dx0
∞∫ =

π
4
a−3 2

I4 a( ) = x4 exp −ax2( )dx0
∞∫ =

3 π
8

a−5 2
 

we obtain   

€ 

F v( )dv0
∞∫ = 4π m

2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 π

4
m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−3 2

=1 

i.e. the probability function, 

€ 

F v( ), is properly normalised, and  

€ 
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€ 
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€ 
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€ 

x0 + 3σ
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€ 

v2F v( )dv0
∞∫ = 4π m

2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v4 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 3 π

8
m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−5 2

=
3
2

m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

=
3kT
m

 

i.e.  

€ 

vrms = v2 = v2F v( )dv0
∞∫ =

3kT
m

 

which was needed in the previous section.  
Equally, by using   

€ 

I3 a( ) = x3 exp −ax2( )dx0
∞∫ =

1
2
a−2  

we obtain  

€ 

vF v( )dv0
∞∫ = 4π m

2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v3 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 1
2

m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−2

=
4
π

m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1 2

=
8kT
mπ

 

thus the average velocity is given by  

€ 

v = vF v( )0
∞∫ dv =

8kT
mπ

 

Lastly, the most probable velocity 

€ 

vmp  given 

€ 

d
dv
F v = vmp( ) = 0 

From 

€ 

F v( ), it follows that  

€ 

F v( )
dv

= 8π m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

mv3

2kT
exp − m

2kT
v2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

thus 

€ 

exp − m
2kT

vmp
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

mvmp
2

2kT
exp − m

2kT
vmp
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 . 

leading to  

€ 

mvmp
2

2kT
=1 

therefore,  

€ 

vmp =
2kT
m

 

Note that the trivial solution, 

€ 

v = 0, corresponds to the minimum. 
It is interesting to remark that  

€ 

vmp =
2kT
m

≈1.414 kT
m

,   v =
8kT
mπ

≈1.596 kT
m

,   vrms =
3kT
m

≈1.732 kT
m

 

i.e. the three velocities are not so far apart.  It is interesting to note that  

€ 

vrms
2 =

3kT
m

= 3σ2  

where σ is the standard deviation of the Gauss distribution giving the probability distribution of the 
velocity components.  



Conceptual Questions:

• Imagine you have 4 coins and you toss them. What is the probability that there will be at least two heads? 
a) 1/2  b) 1/16  c) 1/8  d) 3/8  e)11/16; What are micro and macro states in this context?


• Overall possibilities: 16 (4x4); at least two heads: HHTT, HTHT, HTTH, THHT, TTHH, THTH, HHHT, 
HTHH, HHTH, HHHT, HHHH: 11 —> 11/16 (68.75%)


• Microstates are each individual state with the same probability. Macrostates depend on 
definition, only head, at least one/two/three heads etc.


• What is the probability that a system (in thermal equilibrium) takes on energy E1 given the number of 
microstates Omega1? What is in this context the meaning of the Boltzmann factor?


• P(E1) ~ Omega1 exp(-E1/kT)/Z —> the larger the number of microstates, the higher the T and the 
smaller E1, the higher the probability that system takes on energy E1


• Also depends on Z — the sum over all possible energy states of the system, defined as 


• The Boltzmann factor in this context is exp(-E1/kT)
<latexit sha1_base64="L6v2v+hGbqsFLS74RZQhrnPVx8g=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AV3FhmxNtGKIrgzgr2gp06ZNLTNjSZGZKMUIa+gBtfxY0LRdy6d+fbmF4W2vpD4OM/53By/iDmTGnH+bYyM7Nz8wvZxdzS8srqmr2+UVFRIimUacQjWQuIAs5CKGumOdRiCUQEHKpB92JQrz6AVCwKb3UvhoYg7ZC1GCXaWL69g+/wGfZUInyGvWsBbWIA7tN9LwBN8KXP+jnfzjsFZyg8De4Y8miskm9/ec2IJgJCTTlRqu46sW6kRGpGOfRzXqIgJrRL2lA3GBIBqpEOr+njXeM0cSuS5oUaD93fEykRSvVEYDoF0R01WRuY/9XqiW6dNlIWxomGkI4WtRKOdYQH0eAmk0A17xkgVDLzV0w7RBKqTYCDENzJk6ehclBwjwtHN4f54vk4jizaQttoD7noBBXRFSqhMqLoET2jV/RmPVkv1rv1MWrNWOOZTfRH1ucPdjSZ8Q==</latexit>

Z =
X

i

⌦ie
��Ei



Conceptual Questions:

• What is the Maxwell distribution of gas, and what does it depend on?


• distribution of speeds among the particles (like atoms or molecules) in a gas,  relating the 
macroscopic properties of gases (such as T and P) to the microscopic behaviour of their particles


• probability density function for a particle having a speed |v|: 


• 


• What is correct? The rms speed of the molecules of an ideal gas

a) is the same as the most probable speed of the molecules.

b) is always equal to square root of 2 times the maximum molecular speed.

c) will increase as the T of a gas increases

d) is not equal to the average speed of a gas.

e) all of the above


• v_rms =  sqrt(3kT/m) —> c) is correct!


• d) is correct:  v_rms >  v_avg (=<v>)


• Think of your questions!
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An important characteristics of a Gauss distribution is that the probability for x to be between  
and  is ~68.2%. Equally for between  and , ~95.4%, and for between  
and , ~99.7%.  

 
 
By recalling, 

€ 

v2 = vx
2 + vy

2 + vz
2 and 

€ 

dvxdvydvz = v2 sinθdvdθdφ , it follows that  

€ 

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

exp −
m
2kT

vx
2 + vy

2 + vz
2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
dvxdvydvz =

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v2 sinθdvdθdφ  

Integration over θ and φ gives  

€ 

F v( )dv =
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv sinθdθ dφ0

2π∫0
π∫ = 4π m

2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv  

where 

€ 

F v( ) = 4π m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

gives the probability distribution of the velocity, 

€ 

v .  Using 

€ 

F v( ), called the Maxwell distribution of 
speeds, the average velocity, 

€ 

v , is given by  

€ 

v = vF v( )0
∞∫ dv . 

Similarly, 

€ 

vrms is given by  

€ 

vrms = v2 = v2F v( )dv0
∞∫  

Using the integrals given in the next section,  

€ 

I2 a( ) = x2 exp −ax2( )dx0
∞∫ =

π
4
a−3 2

I4 a( ) = x4 exp −ax2( )dx0
∞∫ =

3 π
8

a−5 2
 

we obtain   

€ 

F v( )dv0
∞∫ = 4π m

2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 π

4
m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−3 2

=1 

i.e. the probability function, 

€ 

F v( ), is properly normalised, and  

€ 
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