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Introduction a la thermodynamique

Théorie cinétique des gaz

Gaz parfaits, gaz réels, gaz de Van der Waals
Transitions de phase

Le premier principe

Le second principe

Cycles et machines thermiques

Diffusion, transfert de chaleur

Systémes ouverts, potentiel chimique

Introduction a la relativité restreinte
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Structure du chapitre

3. Gaz parfaits, gaz réels, gaz de Van der Waals
3.1 Gaz parfaits
3.1.1 Hypotheéses du gaz parfait

3.1.2 Approche historique
3.1.3 Loi de Dalton
3.1.4 Diagramme P-V

3.2 Gaz réels
3.2.1 Diagramme P-V

3.3 Le gaz de Van der Waals
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Exemples et applications de fluides supercritiques
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Exemples d’utilisation de fluide supercritique

Séchage supercritique

> Evite des forces capilaires associées a

Décaféination avec CO; supercritique

» COa;: solvant sélectif pour la caféine

» peut pénétrer profondément dans les grains de
cafés

I"évaporation du liquide
» Préserve les structures fines

» Applications:
> séchage de tissus biologiques

> séchage de structures utilisées en micro et
nano-technologies

> avantage: absence de solvant toxique
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Exemples d'utilisation de fluide supercritique

Fabrication de matériaux poreux et légers

» Le CO; supercritique agit comme un plastifiant
» Permet de créer des structures en 3D avec une porosité controlée, le résultat est un matériau

souple et léger
> Applications:
> Aéronautique
> Isolation

Al &

Immiscible Polymer * Solid State Foaming * Solvent Leaching
Blend
- .

Ref: Fabricating biomimetic porous PEEK scaffolds for bone implants
(https://doi.org/10.1080/00914037.2024.2314606)
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Exemple de fluide supercritique dans la nature

Mont hydrothermal le long des dorsales océaniques
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Exemple de fluide supercritique dans la nature

hydrothermal
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Expérience: Palier de liquéfaction
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Expérience: Variation de la température autour du point critique
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Diagramme P-V d'un gaz de Van der Waals
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Gaz de Van der Waals, coefficients a et b
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