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Exercice 1 Plaque de combustible nucléaire
On considère une plaque rectangulaire d’épaisseur l et d’aire A parfaitement isolée sur ses
faces. La plaque est maintenue à la température T0 sur ses deux faces.
La réaction nucléaire est à l’origine d’un dégagement d’énergie dont la puissance volumique
pQ est connue.
Etablir le profil de température dans la plaque en régime stationaire.

Exercice 2 Isolation thermique
On cherche à évaluer les pertes thermiques à travers une baie vitrée d’aire A = 2 m2. La
témpérature à l’intérieur est Tint = 20 ◦C et celle à l’extérieur Text = 0 ◦C. On donne λverre =
1 W/(mK) et λair = 0, 024 W/(mK).

1. La vitre est du simple vitrage d’épaisseur ℓ = 5 mm. Calculer le profil de tempéra-
ture à travers la vitre ainsi que la puissance du radiateur nécessaire pour maintenir la
température dans la pièce.

2. On veut remplacer la vitre par un double vitrage. On considère d’une manière générale

deux matériaux de conductivités λ1 et λ2 et d’épaisseurs ℓ1 et ℓ2. On appelle Ri =
ℓi
λi

la résistance thermique du matériau i.

(a) Montrer que pour deux matériaux en série, de résistances R1 et R2, la résistance
totale est R = R1 +R2.

(b) Exprimer la puissance thermique PQ traversant la baie vitrée en fonction de Text,
Tint, R et A. L’évaluer PQ pour du double vitrage. On prendra deux vitres de 4 mm
et une couche d’air de 16 mm.

Exercice 3 Petite incursion dans la symétrie cylindrique
On considère un fil chauffant de rayon r0 entouré de matériau isolant de conductivité thermique
λ, formant un fil plus épais de rayon r1. La puissance dégagée par unité de longueur de fil est
Pℓ. La température extérieure est Text. On considère que la conductivité du matériau du fil est
parfaite, et que donc sa température est homogène. Quelle est l’expression de la température
en fonction du rayon dans le matériau isolant ? Quelle est la température à l’interface entre le
fil et le matériau isolant ?

Exercice 4 Onde de chaleur
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On s’intéresse à la variation de la température dans le sol lorsque la température de surface
oscille de façon périodique, comme c’est par exemple le cas lors d’une journée ensoleillée. C’est
un problème similaire à celui du barreau chauffé de manière périodique, vu en amphi.

1. Résoudre l’équation de diffusion de la chaleur dans le sol en prenant l’axe vertical z
orienté vers le bas. On notera κ = λ/(c∗ρ) le coefficient de diffusion de la chaleur et
T (z, t) la température dans le sol à la profondeur z et au temps t. On supposera que
T (0, t) est connu et vaut

T (0, t) = T̄ +A cos(ωt) ,

avec T̄ la température moyenne de la surface, A l’amplitude des oscillations et ω la
pulsation des oscillations. On posera δ =

√
2κ/ω. On supposera que la température en

z a la forme
T (z, t) = T̄ + a(z) cos(ωt+ φ(z)) .

Indication : réécrire l’équation de diffusion de la chaleur en fonction de θ = T − T̄ ,
qui représente l’écart entre la température du sol et la température moyenne à la
surface. Chercher une solution complexe du type θ̃(z, t) = a(z) exp(iφ(z)) exp(iωt) =
ã(z) exp(iωt).

2. Une de vos connaissances souhaite ouvrir un restaurant. À quelle profondeur sous le
sol doit-elle faire creuser sa cave pour assurer une température plus ou moins constante
tout au long de l’année, et ainsi assurer une bonne conservation de son vin ?
Données : prendre A = 30 ◦C pour l’amplitude des fluctuations annuelles de la tem-
pérature à la surface du sol, et κ = 2, 8 × 10−7 m2/s pour le coefficient de diffusion
thermique dans le sol.

Exercice 5 Effusivité
La sensation de chaud que l’on perçoit n’est pas la même lorsque l’on touche des matériaux
différents qui sont à la même température. Par exemple, on se brûle la main en touchant une
plaque métallique à 100 ◦C, alors qu’on supporte une pince en bois à la même température.
On va chercher à comprendre ce phénomène dans cet exercice.

1. On met en contact deux corps à des températures différentes T1 et T2, avec T2 > T1.
Une fois le régime permanent établi, la température à l’interface entre ces deux corps
se stabilise à une valeur intermédiaire entre T1 et T2, que l’on nomme « température
de contact » et que l’on note Tc. Calculer Tc en fonction de T1 et T2.
Suggestion : Utiliser le résultat de l’exercice précédent avec ω −→ 0. On notera λ1 et
λ2 les conductivités thermiques des deux corps.

2. Calculer la température de contact entre une main et un morceau de bois à 100 ◦C.
Comparer avec le cas où le bois est remplacé par un morceau d’acier à 100 ◦C.
Données : On approximera les propriétés thermiques de la peau par celles de l’eau, à
savoir une conductivité thermique λpeau = 0, 6 W/(mK) et une diffusivité thermique
κeau = 1, 4× 10−7 m2/s. On prendra également λbois = 0, 12 W/(mK), κbois = 0, 12×
10−6 m2/s, λacier = 50, 2 W/(mK) et κacier = 39, 4× 10−6 m2/s.
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Solutions

Solution 1 Comme pour la fenêtre vue en amphi, c’est un problème à une dimension à cause
de l’isolation des faces latérales. de plus, régime stationaire : T = T (x).
Equation de propagation de la chaleur :

∂T

∂t
= 0 =

λ

c∗ρ
∇2T +

σu
c∗ρ

∇2T =
d2T

dx2

σu = PQ

λ

c∗ρ

d2T

dx2
=

PQ

c∗ρ

d2T

dx2
= −

PQ

λ
= cte

T (x) = −1

2

PQ

λ
x2 + ax+ b

Avec a et b constantes d’intégrations T (x = 0) = T0 donc b = T0.
T (x = l) = T0 donne a =

PQl
2λ

Donc au final
T (x) = −1

2

PQ

λ
x2 +

1

2

PQ

λ
lx+ T0

Solution 2

1. L’équation de la chaleur est
∂T

∂t
=

λ

c∗ρ
∇2T ,

où λ est la conductivité thermique, c∗ la capacité thermique et ρ la masse volumique.
En régime permanent, on a

∂T

∂t
= 0 =⇒ ∇2T = 0 ,
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donc
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 .

La symétrie du problème fait que T ne dépend que de x, on a donc seulement
∂2T

∂x2
= 0,

que l’on peut intégrer deux fois :

T (x) = ax+ b ,

avec a et b des constantes déterminées par les conditions au bord :

T (0) = Tint =⇒ b = Tint ,

T (ℓ) = aℓ+ Tint = Text =⇒ a = −Tint − Text

ℓ
.

Finalement, on obtient

T (x) = −Tint − Text

ℓ
x+ Tint ,

que l’on peut aisément tracer sur la figure ci-dessus. On cherche la puissance thermique
dissipée à travers la vitre. D’après la loi de Fourier, la densité de flux de chaleur est
liée à la température par

ju = −λ∇T ,

qui, à une dimension, se réduit à

jux = −λ
dT

dx
= −λ

(
−Tint − Text

ℓ

)
=

λ

ℓ
(Tint − Text) .

Or, par définition,

jux =
dU

Adt
=

δQ

Adt
,

donc
PQ =

δQ

dt
=

λA
ℓ

(Tint − Text) .
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Avec λ = 1 W/(mK), A = 2 m2, ℓ = 5× 10−3 m et Tint − Text = 20 K, on obtient

PQ =
1× 2× 20

5× 10−3
=

40

5
× 103 = 8 kW.

2. (a) La puissance thermique est identique tout au long de x car on est en régime perma-
nent. Pour une différence de température ∆T et une résistance thermique R, elle
vaut

PQ =
λ

ℓ
A∆T =

1

R
A∆T

Considérons deux matériaux 1 et 2 en série et appelons Ti température de l’interface
entre les deux. On a à travers le matériau 1 et le matériau 2 respectivement :

PQ =
1

R1
A (Tint − Ti) et PQ =

1

R2
A (Ti − Text) ,

que l’on peut réécrire

PQR1

A
= Tint − Ti et

PQR2

A
= Ti − Text .

En sommant les deux, on aboutit à

PQ =
1

R1 +R2
A (Tint − Text) ,

et par identification on obtient finalement

R = R1 +R2 .

(b) On a trois résistances thermiques en série, la résistance totale est la somme :

Rtot = 2
ℓvitre

λvitre
+

ℓair

λair
.

L’application numérique donne

Rtot =

(
2× 4

1
+

16

0, 024

)
× 10−3 = 0, 675 Km2/W ,

et la puissance thermique est donc

PQ =
A∆T

Rtot
=

2× 20

0, 675
= 59 W .

Remarque : les constructeurs donnent le coefficient de transmission thermique U
qui est l’inverse de la résistance thermique U = 1/R en W/(K−1 m−2). Un double
vitrage classique a un U de 1,1 là où on a calculé 1,5 : l’ordre de grandeur est bon.

Solution 3
Pendant dt, une longueur ℓ de fil produit δQ = Pℓℓdt. Cette chaleur doit être transférée vers
l’extérieur. En régime permanent, le flux est constant pour chaque couche cylindrique. Entre
r et r + dr on a :

P =
δQ

dt
= −λAdT

dr
= −λ2πrℓ

dT

dr
,
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donc
Pℓℓ = −2λπrℓ

dT

dr
,

soit
dT = − Pℓ

2πλ

dr

r
.

En intégrant de r1 à r, il vient

T (r)− T (r1) = − Pℓ

2πλ
ln

r

r1
,

soit donc finalement
T (r) = T0 +

Pℓ

2πλ
ln

r1
r

.

En particulier, la température à l’interface est Ti = T (r0), donc

Ti = T0 +
Pℓ

2πλ
ln

r1
r0

.

Solution 4

1. L’équation de diffusion de la chaleur s’écrit :

∂T

∂t
= κ

∂2T

∂z2
.

En posant θ = T − T̄ comme suggéré dans l’énoncé, on peut réécrire cette équation
comme

∂2θ

∂z2
− 1

κ

∂θ

∂t
= 0 , (1)

avec la condition au bord suivante :

θ(0, t) = A cos(ωt) . (2)

On cherche une solution complexe de l’équation (1) de la forme θ̃(z, t) = ã(z) exp(iωt).
En injectant cette expression dans (1), on trouve :

d2ã

dz2
− iω

κ
ã = 0 . (3)

Il s’agit de l’équation d’un oscillateur harmonique dont la pulsation (complexe) r est
définie par

r2 =
iω

κ
=

ω

κ
exp

[
i
(π
2
+ 2nπ

)]
,

avec n nombre entier quelconque. On trouve r avec :

r = (r2)1/2 =

√
ω

κ
exp

[
i
(π
4
+ nπ

)]
.

Pour n = 0, on obtient :

r0 =

√
ω

κ
exp

(
i
π

4

)
=

√
ω

κ

[
cos

(π
4

)
+ i sin

(π
4

)]
=

√
ω

κ

1 + i√
2

.
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Si l’on choisit n = 1, on trouve :

r1 =

√
ω

κ
exp

(
i
5π

4

)
=

√
ω

κ

[
cos

(
5π

4

)
+ i sin

(
5π

4

)]
= −

√
ω

κ

1 + i√
2

.

Pour n’importe quel autre choix de n, on trouve soit la même solution que pour n = 0
si n est pair, soit la même solution que pour n = 1 si n est impair. La solution de
l’équation (3) est donc de la forme :

ã(z) = α exp(r0z) + β exp(r1z) ,

avec α et β constantes à déterminer. En introduisant δ =
√

2κ/ω, la solution générale
de l’équation (1) s’écrit ainsi :

θ̃(z, t) = α exp(r0z + iωt) + β exp(r1z + iωt)

= α exp
(z
δ

)
exp

[
i
(z
δ
+ ωt

)]
+ β exp

(
−z

δ

)
exp

[
i
(
−z

δ
+ ωt

)]
.

Comme l’amplitude des fluctuations ne peut pas tendre vers l’infini pour z −→ +∞,
on doit forcément avoir α = 0. De plus, la température étant une grandeur réelle, il
nous faut garder uniquement la partie réelle de l’expression ci-dessus pour obtenir la
solution :

θ(z, t) = Re
[
θ̃(z, t)

]
= β exp

(
−z

δ

)
cos

(
−z

δ
+ ωt

)
.

La constante β peut être obtenue en utilisant la condition au bord (2) ; on trouve
simplement β = A. Finalement, la solution de l’équation de diffusion de la chaleur est :

T (z, t) = T̄ +A exp
(
−z

δ

)
cos

(
−z

δ
+ ωt

)
.

On voit que l’amplitude des fluctuations décroît exponentiellement avec la profondeur.
δ correspond à la profondeur caractéristique de décroissance à laquelle les fluctuations
n’ont plus qu’une amplitude égale à 37% de leur valeur à la surface.

2. La température à la surface du sol varie de façon quasi-sinusoïdale au cours de l’année.
Sa période de fluctuation correspond à 365 jours, soit une pulsation de 2π/(365 ×
24 × 3600) = 2 × 10−7 rad/s. La profondeur caractéristique associée vaut ainsi : δ ≈
1, 7 m. À une profondeur de 2 m, l’amplitude annuelle dans la cave sera de ∼ 30% de
l’amplitude annuelle extérieure. De manière plus importante, les variations quotidiennes
disparaîtront complètement, puisque la longueur caractéristique pour une pulsation
correspondant à une période de 24 heures est de ∼ 8, 8 cm. Cela donne une atténuation
d’un facteur de ∼ 1010 à deux mètres !

Solution 5

1. À partir de l’instant initial où les deux corps sont mis en contact, il y a diffusion
thermique du corps à la température T2 vers le corps à la température T1. Après une
période de transition, le régime permanent est atteint et les températures dans les deux
corps ne varient plus dans le temps. On se retrouve dans le cas schématisé ci-dessous.
La température dans le corps 2 vaut T2 loin de l’interface (i.e. pour x ≫ 0) et tend vers
Tc lorsque x −→ 0. De même, la température dans le corps 1 passe de T1 pour x ≪ 0 à
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Tc pour x −→ 0. Il s’agit d’un cas identique à celui traité dans l’exercice 3, où chacun
des deux corps correspondrait au sol, et Tc à la température de surface. Cependant, Tc
est constant dans le cas présent, ce qui correspond à une période d’oscillation infinie,
c’est-à-dire ω = 0. Par la suite, on ne va pas considérer le cas limite ω = 0, mais plutôt
ω −→ 0, sans quoi δ =

√
2κ/ω −→ +∞. En reprenant la solution de l’exercice 3, avec

A = Tc −T1 dans le corps 1 et A = Tc −T2 dans le corps 2, on trouve que les profils de
température dans les deux corps sont :

T (1)(x) = T1 + (Tc − T1) exp

(
x

δ1

)
cos

(
− x

δ1
+ ωt

)
, (4)

T (2)(x) = T2 + (Tc − T2) exp

(
− x

δ2

)
cos

(
x

δ2
+ ωt

)
, (5)

avec ω −→ 0. Le corps 2 correspond exactement au cas de figure traité à l’exercice 3
de la série 14, puisque x croît lorsque l’on s’enfonce dans le corps. L’inverse est vrai
pour le corps 1, ce qui explique que l’on a remplacé x par −x dans l’expression de T (1).
On a également distingué δ1 de δ2, puisque la conductivité thermique des deux corps
n’est pas la même. Pour trouver Tc, on utilise le fait que le flux thermique au niveau
de l’interface est le même dans les deux matériaux :

JU,1(0) = JU,2(0) =⇒ −λ1
dT (1)

dx

∣∣∣∣∣
x=0

= −λ2
dT (2)

dx

∣∣∣∣∣
x=0

.

En utilisant les expressions (4) et (5) pour T (1) et T (2), on trouve :

λ1

δ1
(Tc − T1) [cos(ωt) + sin(ωt)] = −λ2

δ2
(Tc − T2) [cos(ωt) + sin(ωt)]

=⇒ λ1√
κ1

(Tc − T1) [cos(ωt) + sin(ωt)] = − λ2√
κ2

(Tc − T2) [cos(ωt) + sin(ωt)] ,

où l’on a utilisé les relations δ1 =
√
2κ1/ω et δ2 =

√
2κ2/ω dans la deuxième étape.

N’ayant plus de facteur ω au dénominateur d’une fraction, on peut à présent prendre
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la limite ω −→ 0. On a alors : cos(ωt) −→ 1 et sin(ωt) −→ 0, et donc :

λ1√
κ1

(Tc − T1) = − λ2√
κ2

(Tc − T2) .

On est conduit à introduire l’effusivité thermique E = λ/
√
κ =

√
λc∗ρ, ce qui donne :

E1(Tc − T1) = −E2(Tc − T2) =⇒ Tc =
E1T1 + E2T2

E1 + E2
.

Ainsi, la température de contact est la moyenne des températures des deux matériaux,
pondérées par leurs effusivités et non leurs conductivités thermiques.

2. Avec les données de l’énoncé, on peut calculer les effusivités des différents matériaux :

Epeau =
λpeau√
κpeau

≈ 1, 6× 103 W/(m2Ks1/2),

Ebois =
λbois√
κbois

≈ 343 W/(m2Ks1/2),

Eacier =
λacier√
κacier

≈ 8× 103 W/(m2Ks1/2).

Dans le cas du toucher d’une pièce de bois à T2 = 100 ◦C = 373 K, la température de
contact vaut :

Tc =
1, 6× 103 × 310 + 343× 373

1, 6× 103 + 343
= 324K, soit 48 ◦C,

si la main est supposée à 310 K (= 37 ◦C). En revanche, si le corps touché est une
plaque en acier inox, cette température vaut :

Tc =
1, 6× 103 × 310 + 8× 103 × 373

1, 6× 103 + 8× 103
= 363K, soit 90 ◦C,

d’où la sensation de chaud dans ce dernier cas.
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