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Exercice 1 Plongeur
Un plongeur en apnée doit palmer pour arriver à descendre depuis la surface, mais à partir

d’une certaine profondeur, il commence à couler et doit au contraire palmer pour remonter.

La densité moyenne d’un corps humain dépend, entre autres, du volume Vgaz occupé par les

gaz présents dans son corps (principalement air dans les poumons). On considère un plongeur

à une profondeur h par rapport à la surface d’un lac ou de la mer de densité volumique ⇢.

Soit 37 �C la température du plongeur, m = 80 kg sa masse, et V = V0 + Vgaz son volume, où

V0 est le volume constant occupé par les tissus incompressibles mais déformables du plongeur

(muscles, os, graisse, etc.). On estime que la densité des tissus est ⇢0 = m/V0 = 1 060 kg/m3
,

et qu’approximativement n = 0, 25 mol de gaz sont contenues dans ses poumons. La pression

à la surface est p0 = 105 Pa. Calculer la profondeur limite h0 pour laquelle le plongeur n’est

plus poussé vers le haut et se met à couler à pic, s’il plonge dans un lac (⇢ = 1 000 kg/m3
)

ou dans la mer (⇢ ⇡ 1 025 kg/m3
).

Exercice 2 Limite à la compressibilité brutale d’un gaz
Soit un gaz parfait de coefficient adiabatique �, de capacité calorifique molaire à volume

constant cV et cp à pression constante. Un piston contient n moles de ce gaz à la pression p0

et la température T0 dans le volume V0. On comprime le piston pour arriver à p1, V1 et T1.

On appelle k = p1/p0 le taux de compression et a = V0/V1 le rapport volumétrique.

1. Calculer a en fonction de k pour :

— une compression isotherme réversible ;

— une compression adiabatique réversible ;

— une compression adiabatique irréversible directement à la pression p1.

Montrer que dans le cas de la compression adiabatique brutale, a tend vers une valeur

finie quand k tend vers l’infini.

2. Calculez la température finale T1 en fonction de �, k et T0 pour la compression brutale.

A.N. : pour � = 5/3, k = 10 et T0 = 300 K.

3. Quelle est la valeur de T1 dans la cas limite où p1 = 0 (c’est-à-dire k = 0), soit une détente

brutale ? On ne retrouve pas le comportement de la détente de Joule & Gay-Lussac vue

en cours (détente irréversible dans le vide), à votre avis pourquoi ?

Exercice 3 Modèle de pression atmosphérique
On s’intéresse dans cet exercice à la variation de la pression et de la température atmosphé-

riques en fonction de l’altitude. On considère l’air comme un gaz parfait de masse molaire M

et coefficient adiabatique � = 1, 4. La portion de l’atmosphère comprise entre la surface de la

Terre et environ 20 km d’altitude se compose de deux couches. La première, que l’on nomme

la troposphère, présente une variation considérée « adiabatique » de la température en fonc-

tion de l’altitude, c’est à dire que le couple (pression, température) suit la loi de Laplace. La

seconde couche correspond à la stratosphère, nommée ainsi en raison de sa forte stratification

(l’air n’y bouge presque pas, il n’y a quasiment aucun mouvement ascendant ou descendant).

La température de l’air y est pratiquement constante en fonction de l’altitude.

1. Montrer que la relation à l’équilibre entre dp et dh s’écrit

dp = �⇢g dh .
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2. Trouver la pression dans la troposphère à une altitude h quelconque, ptropo(h), et en

dériver l’expression de la température en fonction de l’altitude. En utilisant les valeurs

⇢0 = 1, 23 kg/m3
et p0 = 105 Pa, calculer le taux de variation de la température avec

l’altitude et, à l’aide d’un développement limité pour de petites valeurs de h (i.e. proche

du sol), puis le taux de variation de la pression avec l’altitude.

3. Donner le profil de température et de pression dans la stratosphère.

Exercice 4 Calculs usuels pour un gaz parfait
On considère n moles de gaz parfait de coefficient � subissant une transformation réversible

d’un état 0 : (p0, T0, V0) à un état 1 : (p1, V1, T1). Calculer les grandeurs Q, W , �U , �H

et �S pour les quatre transformations usuelles : adiabatique, isotherme, isochore et isobare.

Compléter le tableau ci-dessous.

Adiabatique Isotherme Isochore Isobare

Q

W

�U

�H

�S

Attention : pour certains cas, le résultat obtenu reste valable même en supprimant certaines

de contraintes (gaz parfait et/ou transformation réversible) Il est important que ce soit bien

clair pour vous. L’indiquer dans le tableau lorsque c’est le cas. Suivant les cas, les variables

les plus simples seront p, V ou T , et il est possible que vous ayez besoin de CV ou Cp.

Exercice 5 Thermodynamique de l’élastique
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On considère un élastique de longueur L dont les extrémités sont soumises à une force élastique

résultante symétrique d’intensité totale f définie positive pour une élongation positive de

l’élastique. L’élastique est considéré comme un système simple constitué d’une seule substance

chimique. On suppose donc que le travail effectué par la force symétrique d’intensité f est

réversible, ce qui signifie que la norme de la tension de l’élastique est égale à f . Ainsi, l’intensité

de la force f peut être considérée comme variable d’état et le travail infinitésimal effectué sur

l’élastique par la force d’intensité f s’écrit

�W = f dL .

La différentielle de l’énergie interne s’écrit

dU (S,L) = �Q+ �W = T dS + f dL .

Le coefficient de dilatation à force constante ↵f et le coefficient de compressibilité isotherme

T de l’élastique sont définis comme

↵f =
1

L

@L (T, f)

@T
< 0 et T =

1

L

@L (T, f)

@f
> 0 .

1. Exprimer la différentielle de la longueur dL (T, f) en fonction du coefficient de dilatation

à force constante ↵f et du coefficient de compressibilité isotherme T .

2. Déterminer l’expression de la capacité thermique à longueur constante CL et de la ca-

pacité thermique à force constante Cf en fonction des fonctions entropies S (T, L) et

S (T, f) respectivement.

3. Déterminer les différentielles de l’énergie libre dF (T, L) et de l’énergie libre de Gibbs

dG (T, f).

4. Montrer que la chaleur infinitésimale �Q fournie à l’élastique peut être écrite en termes

des capacités thermiques comme

�Q = Cf dT + ↵fAT df et �Q = CL dT +
↵f

T
T dL .

5. Montrer que les capacités thermiques CL et Cf sont liées par la relation de Mayer

Cf � CL =
↵
2
f

T
TL .
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