Expérience : point triple de |'azote
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10. Chaleurs latentes de changement de phase
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10. Chaleurs latentes de changement de phase

Expérience : passage du fil a travers le bloc de glace

& > solid
= kikze L gus

__‘\
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11. Etats hors équilibre (surfusion)

11. Etats hors équilibre (surfusion)
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1. Introduction, définition

1. Introduction, définition

Systéme thermodynamique qui permet de convertir de la chaleur en travail ou d'utiliser
du travail pour transférer de la chaleur d’une source froide vers une source chaude, et

qui foncti;)nne selon une succession de cycles. Siddléum ) 3
1”-3"4’” T =cke AU=0 = @ +W Ga n'ad 22 lne woclow
':Bp‘t:; Q apbe W= -Q c‘awm m 'c:d_of_:

of

'5901}’ -pc[m»-fc« aures /QexJ?W/ OQM‘[‘(MKADSJTAJ Ml\a_vrz_):\&zh

— waclunes é}_‘“/w/w = 2 thawskls & |d.«“He'FmbA —U,_>Tlc

WoMHm’\wo 1 L




1. Introduction, définition

Représentation schématique d'une machine thermique ditherme
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1. Introduction, définition

Rz' sume

Une machine thermique est un dispositif qui comprend un systéme thermodynamique
opérant selon une succession de cycles. Ce dispositif a la propriété d'échanger avec son
environement et peut soit convertir de |I'énergie thermique en travail, soit utiliser du
travail pour réaliser un transfert thermique d'un corps froid vers un corps chaud.

Une machine thermique doit étre en contact avec un ou plusieurs réservoirs de chaleur
appelés thermostats ou bains thermiques. On appelle une machine ditherme une
machine qui durant son cycle échange avec deux bains thermique de température
différentes.



1. Introduction, définition

Sens des cycles dans des diagrammes (p, V) et (T, S) S’tdsl-éu.e

Hotes W< W- /’Y’dv Oraunfo advems bles)

oqole
f Lema
() O, e
dl = Tde - Fcl\/ fdu-—j’\as_ rd\/
2\ ('JJJO
ob  ~ge
o :
3 Tde = J
Jod;ls dﬁ O . Ho?‘@u\r
S e @ {() i a aedoy



1. Introduction, définition

Sens de fonctionnement d'une machine thermique = docs daces shdma.
Yobaw  Q
(4| = w<o
Qx,l & Qb = - W >0

T

o\mdm/lmw“l/«wila@»" Qu >o o @
QL >o ow SO % 8 ywik-?{f\'vls

W Yo oo

Qudo Q4o (uu puo baed)
lapl <1 Q|



2. Efficacité, rendement

2. Efficacité

Définition générale; cas d'un moteur
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2. Efficacité, rendement

Pompe a chaleur, frigo

Az (T W>o Qulo Q@ >o

o diolowr Ty e aossand =
Nl\’fcw:-‘(\g TR = R A N[V

S YN
AW+ Qp .

Q.
o\

|-2..2
W ®\9.ka



3. Cycle idéal de Carnot
3. Cycle idéal de Carnot

Un cycle idéal de Carnot (ou machine idéale de Carnot) est une machine ditherme dont
le cycle est réversible et composé de deux adiabatiques et deux isothermes.
— — s .wdmrm‘,,e
T okl o adioke AS =0
. ] ‘q""’ od ey =
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3. Cycle idéal de Carnot

Démonstration de I'égalité entre température absolue et température
thermodynamique
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3. Cycle idéal de Carnot

T propabonds 37T abslue
avee b benne consbande (K\)
THA =T
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3. Cycle idéal de Carnot

Résme

Pour un cycle idéal de Carnot, la définition de I'entropie et son application a des
transformations réversibles (2. principe) implique

Q r N . - T.\o
& + & =0 =) 9@ - <2 9‘ - :T—
Th Tb Tu Ty Q. W
NZ_N = A X+ ng - /1 — Ti’_
L'efficacité du moteur de Carnot réversible est Y T
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3. Cycle idéal de Carnot

Cycle de Carnot en fonctionnement pac/frigo

onc/\onM/mm/' fac /—%v\ru

%Qk Jepuave AS-o - &
!4*: li Tl a.
———— 0% Qh T"L
— A
Mpac - ka\ S A e - . i @
~Qp-Qun A & AT
Ah ——rh_
.Q_JD = Qb--&_ - 1 - - A = A =
\' Qi A2 ATk Ty W >e
[N Al

15



) ) na«ouh S.28
4. Clausius, Kelvin et rendement max.

4. Interdit de Clausius, interdit de Kelvin et théoréme du rendement

maximum
avee 8

Nous avons vu (chapitre 3) que notre formulation du 2. principe implique que la chaleur
va spontanément d'un corps chaud a un corps froid.

Ceci a été formulé par Clausius sour la forme de "lI'interdit de Clausius".

Il n'existe pas de processus dont I'unique action est de tranférer de la chaleur d'un corps
froid vers un corps chaud.

—— jm\‘m&dk {‘G(A @Du-(h‘u-é
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4. Clausius, Kelvin et rendement max.
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4. Clausius, Kelvin et rendement max.
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4. Clausius, Kelvin et rendement max.

Résumé :
Clausius (1822-1888)

Il n'existe pas de processus, dont |'unique action est de transporter de la chaleur d'un
thermostat de basse température d un thermostat de haute température.

Kelvin (1824-1907) ou Carnot (1796-1832)
Il n'existe pas de moteur en contact avec un seul thermostat, dont |'unique action serait
de transformer de la chaleur en travail

Théoréme du rendement maximum
L'efficacité maximum d'un moteur thermique ditherme est celle d'une machine de
Carnot réversible, 1 — Tp/ T},

sont des formulations historiques du 2. principe. Nous les avons démontrées a partir de
notre formulation du 2. principe qui inclut la définition de |'entropie. Il est aussi possible
de construire la fonction entropie a partie de ces formulation historiques.
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4. Clausius, Kelvin et rendement max.
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4. Clausius, Kelvin et rendement max.

Corrolaire au théoréme du rendement maximal

Un moteur ditherme et réversible a forcément |'efficacité de Carnot idéal,
M Carnot = 1—- Tb/ Th-

Ly & df wonkren o wrorcias
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5. Machine ditherme réelle

5. Machine ditherme réelle . On a vu Jor Conoof ddiad Q 4 & =0
Te Tb
Pour une machine ditherme réelle (irréversible)
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5. Machine ditherme réelle
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6. Cas du cycle pompe a chaleur/ frigo
6. Cas du cycle pompe a chaleur/ frigo
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6. Cas du cycle pompe a chaleur/ frigo
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LRésumé S ef 5] aclowess H\wwu?ot,w» ol {homres

Dans tous les cas (moteur, frigo, p.a.c.) : inégalité de Clausius

Ll + O <0
Ty Th
Efficacité moteur : 0 -
b b
— 1 ILAPY 1 _ P rev
7]m + Qh — Th 7]m
Efficacité pompe a chaleur :
1 1
Mpae = ——q; < T, = lpac
1+ 1=
Efficacité frigo :
1 1
"-—g <7 e

Qs ?b_l
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7. Cycle de Stirling
7. Cycle de Stirling

Cycle de Stirlinglmoteuﬂ avec régénérateur : échanges et efficacité
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7. Cycle de Stirling
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7. Cycle de Stirling

Cycle de Stirling moteur sans régénérateur.
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7. Cycle de Stirling

Cycle de Stirling pac / frigo.
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