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V - Gaz parfait et gaz de van der Waals 4. Capacité calorifique des gaz parfaits et des solides

Résumé, pour un gaz parfait :

U = NcvT H = NcpT cv =
f

2
R cp =

f + 2
2

R g =
f + 2
f

f cV cp g

Gaz monoatomique 3 3/2 R 5/2 R 5/3 = 1.67

Gaz diatomique (sans vibration) 5 5/2 R 7/2 R 7/5 = 1.4

Gaz diatomique (avec vibration) 7 7/2 R 9/2 R 9/7 = 1.28

Pour les solides, modèle de Dulong-Petit

Capacité calorifique molaire, par moles d’atomes !

c = 3R
28
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

5. Loi de Dalton

Dans un gaz parfait il n’y a pas d’intéraction des molécules de gaz entre elles autres que
par des chocs élastiques.

Dans un mélange parfait de gaz parfaits, les molécules des différentes espèces chimiques
n’intéragissent que par chocs élastiques

Exemple : air composé de N2, O2, Ar, CO2, H2O...

Considérons i espèces chimiques (gaz parfaits) à la température T avec Ni le nombre
de moles pour chaque espèce.

N = Â
i

Ni
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

Si les atomes / molécules du mélange n’interagissent pas entre elles sauf par chocs
élastiques

U = Â
i

Ui

Si le mélange est parfait, il se comporte comme un gaz parfait et alors

pV = NRT

30

Mi energie entere
de l'espace i

-



V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

Soit pi la pression partielle de l’espèce i . C’est par définition la pression qu’aurait
l’espèce i si elle occupait seule le volume V

piV = NiRT

La pression totale est alors la somme de toutes les pressions partielles. C’est la loi de
Dalton

p = Â
i

pi
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

soit
xi =

Ni

N

la fraction molaire de l’espèce i .
pi = xip

Considérons chaque espèce prise à la pression p du mélange. Le volume partiel Vi est le
volume qu’occuperait l’espèce i .

pVi = NiRT

alors
Â
i

Vi = V
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6. Au delà du gaz parfait : van der Waals
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

Potentiel de Lennard Jonnes
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

Au final, l’équation d’état devient

(p + a
N

2

V 2 )(V � bN) = NRT

a et b dépendent du gaz. n = N/V ! 0 on retrouve le gaz parfait.
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

Exemple : Gaz SF6, a = 0, 786 m6 Pa/mol2 ; b = 8, 786.10�5m3/mol.

Comparaison des isothermes VdW (bleue) et GP (grise) à T=273K

37
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V - Gaz parfait et gaz de van der Waals 7. Isothermes en coordonnées réduites

7. Isothermes en coordonnées réduites
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V - Gaz parfait et gaz de van der Waals 7. Isothermes en coordonnées réduites

Coordonnées normalisées aux valeurs critiques
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Plan du cours
I - Introduction
II - Premier principe
III - Second principe
IV - Fonctions thermodynamiques et équilibres
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1. Introduction et troisième principe de la thermodynamique
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4. Convexité de U(S,V)
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VI - Changements de phases
1. Introduction et troisième principe de la
thermodynamique

1. Introduction et troisième principe de la thermodynamique

Définition de phase

Domaine du système dans lequel certaines propriétés comme la densité, la capacité
calorifique, ... sont identiques, et qui peuvent se transformer les uns dans les
autres.

Exemples les plus connues : les phases de
l’eau : glace, eau liquide, vapeur d’eau.

Mais aussi phases d’un solide (carbone
amorphe, carbone diamant, carbone gra-
phite, nanotubes, fullérènes)

Certains de ces changements sont associées à des échanges d’énergie (VI-10)
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VI - Changements de phases
1. Introduction et troisième principe de la
thermodynamique

phases gazeuse, liquide, solide

– Gaz : fluide compressible

– Liquide : fluide incompressible

– Solide : indéformable incompressible
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VI - Changements de phases
1. Introduction et troisième principe de la
thermodynamique

Troisième principe de la thermodynamique

Lorsque la température d’un système tend vers le 0 absolu (qui ne peut jamais être
atteint), son entropie tend vers 0.
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VI - Changements de phases 2. Concavité de S(U,V)

2. Concavité de S(U,V)

L’entropie S est une fonction concave de l’énergie interne et du volume

7
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8
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VI - Changements de phases 2. Concavité de S(U,V)

9

M = che Stonction concave do V

du = Tds-pdV -> TdS: dU + pdV dS= Ed +Y
=+ S(v) roissanton

SDS(U= ch
,
v) more raisonnement

↳8 : concave de V.
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VI - Changements de phases 3. Signes des capacités thermiques

3. Signes des capacités thermiques

Pour un système stable :

Cp � CV � 0

kS � 0

kT = kS
Cp

CV
� 0
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VI - Changements de phases 3. Signes des capacités thermiques

Démonstration :

12

supposons un systems tel que /O
T dans Tex
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↳ 10 ;8910 = dTo
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4. Convexité de U(S,V)

L’énergie interne est une fonction convexe de l’entropie et du volume

14
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VI - Changements de phases 4. Convexité de U(S,V)

15

https://msampler.wordpress.com/2009/11/23/
convex-analysis-and-thermodynamics/
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V) convexe
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VI - Changements de phases 5. Courbure des potentiels thermodynamiques

5. Courbure des potentiels thermodynamiques

Les potentiels thermodynamiques U, F , H, G sont des fonctions convexes de leurs
variables d’état extensives S et V et concaves de leurs variables intensives T et p.

17
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6. Stabilité en termes de U(S,V)
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7. Gaz de v.d.W., pallier de liquéfaction, règle de Maxwell
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Courbe de saturation, rosée, ébullition et domaines de phases

22
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Définition de phase
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Courbe de saturation, rosée, ébullition et domaines de phases
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