Zem 6

4. Capacité calorifique des gaz parfaits et des solides
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4. Capacité calorifique des gaz parfaits et des solides

Capacité calorifique des solides

vAR Ne abowes — Jouwelihar 3N “ola.‘(-p'al: Lhi

éwgg 310,, Nesals > %kf ?{;KW
CE> =) LhT =3Np kT - 3Ny kT = SNRT

M= 2NET = Oy =G - 3NR ey = 3R

Nall o duct L Mol T Usdodeth «dvoh L)

Moo
e, = 6R
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4. Capacité calorifique des gaz parfaits et des solides

Résumé, pour un gaz parfait :

U= Nc, T H = Nc, T cV:gR cpz#R ’y:fif2
f cy p v
Gaz monoatomique 3]13/2R | 5/2R | 5/3=1.67
Gaz diatomique (sans vibration) 5|5/2R | 7/2R | 7/5=14
Gaz diatomique (avec vibration) 7| 7/2R | 9/2R | 9/7=1.28

Pour les solides, modéle de Dulong-Petit
Capacité calorifique molaire, par moles d'atomes ! rmn auywlﬁu Vieke G:G:c¢
c=3R
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5. Loi de Dalton

5. Loi de Dalton o~

Dans un gaz parfait il n'y a pas d'intéraction des molécules de gaz entre elles autres que
par des chocs élastiques.

Dans un mélange parfait de gaz parfaits, les molécules des différentes espéces chimiques
n'intéragissent que par chocs élastiques

Exemple : air composé de Ny, O, Ar, CO,, H5O...

Considérons i espéces chimiques (gaz parfaits) a la température T avec N; le nombre
de moles pour chaque espéce.
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5. Loi de Dalton

Si les atomes / molécules du mélange n'interagissent pas entre elles sauf par chocs
élastiques
. ]
M. eneyte onloa

U= Z U; éD .0{.04[\5@ £
i
Si le mélange est parfait, il se comporte comme un gaz parfait et alors
PRl - L

pV = NRT
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5. Loi de Dalton

Soit p; la pression partielle de |'espéce i. C'est par définition la pression qu'aurait

1 N . - - A3 —
I'espece i si elle occupait seule le volume V' a Aa }am’\a’h}u T

p,'V == N,RT

¢ ¢ ! -_-r\/

2{.(‘\/ = r\/

V3p-pY
2 i i
La pression totale est alors la somme de toutes les pressions partielles. C'est la foi de

Dalton
p=).pi
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5. Loi de Dalton
(Vo N;RT = N8 NRT - g pV
jX':IVi F\ 'R v ‘r

N f.')‘/:‘xt Fy/ Pi=%ip

soit (MFﬁlﬁm)

la fraction molaire de |'espéce i.

pi = Xip

Considérons chaque espéce prise a la pression p du mélange. Le volume partiel V; est le
volume qu'occuperait |'espéce i.

2\;—?\’\.: ?—N‘RT= RT N :P\/

e
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6. Au dela du gaz parfait : van der Waals

6. Au dela du gaz parfait : van der Waals

Te e W /rems'[maw;’am /srez

sV | Tk g
/me /Lfﬂaégv're S cmk dikuc  —n anSSe

AM&W.?DD/ des telbentes e /zum/’/[wk(bﬁf/bcﬂJ

4 L “‘
1 <
[ 0 .
Sede? \h-’
D
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6. Au dela du gaz parfait : van der Waals

Potentiel de Lennard Jonnes

\w:\« b Vo Do Wolls -
/{l .e'MKrc .L\A\'owe

M:M*—-Q_}\r_w:_
Vv

M erm'r‘c Mlerre ab-gdﬂj r‘af\{s}
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6. Au dela du gaz parfait : van der Waals

M dimuwé{m,umlmme W}\MQNJ&%\_
o Cm&‘?‘r'\bbi_bédkéﬁé.

C e
® o 0

\Lolwre

V* Volume accesﬁw

Vo Vo, bW v
M= M- a s ‘%%g
_r»:-p“—r";{- P

NRT ((M

i\]v{_vciumatws(ﬁo\w

=

?\f vt NV
- ()4 F P’*\, NRT = CP-\-

3‘9} CV_Nb)
v- 2

=\ *Nll(n ) D: s

*.:\’ N.b Hb—)
? P - U~ -t‘*—"’-L 3u~] L
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6. Au dela du gaz parfait : van der Waals

Au final, I'équation d’état devient

N2
(p+ays)(V = bN) = NRT

a et b dépendent du gaz. n = N/V — 0 on retrouve le gaz parfait.

(r’*“%\’“’% VET > V= NeT

P
P = N___W L aﬁz = (’(V)
V-Nb v
o? b

A
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6. Au dela du gaz parfait : van der Waals

Exemple : Gaz SFg, a = 0,786 m® Pa/mol®; b = 8,786.10 5m3/mol.
Comparaison des isothermes VAW (bleue) et GP (grise) a T=273K

SF6 (1 mole)
200

— VAW
— GP

L!‘T}u:h =
eﬁéﬁté e[zwmﬁe/\wm J';Li;

/ o \H_\J &V '\l_';

pression (bar)

volumeitss)

T t t t T T
o 5 10 15 20 25
volume(iitres)
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7. lsothermes en coordonnées réduites

7. Isothermes en coordonnées réduites

X exnk wme dolouwe ame 4
poret dianflerior n dsotlave aihge
e
1 rervl'} & iot: C-= 'pm} @N“Vﬁ.pe
Te C(:\fcr Fa) Vc'. UO[MMM a\lh.a(d-Q )

y ° fe i PRS2 ex\lhcl.m
2n wnd=d on wublie - 'yﬁ volume wolase . —20,- Ve
T.= 4 Za & O, =2p = Wwnld o eracice Y



7. lsothermes en coordonnées réduites

Coordonnées normalisées aux valeurs critiques

isothermes de VAW en coordonnées normalisées
|

2.5-2 \ /[l‘ | - ::j.g-s'\—c TA-;=J'

—_—T*=11

pression réduite

I e
A 'o\ne"
+ mFar

0.5 1 15

volume réduit
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1. Introduction et troisiéme principe de la
thermodynamique

1. Introduction et troisiéme principe de la thermodynamique
Définition de phase

Domaine du systéme dans lequel certaines propriétés comme la densité, la capacité
calorifique, ... sont identiques, et qui peuvent se transformer les uns dans les
autres.

Exemples les plus connues : les phases de
I'eau : glace, eau liquide, vapeur d'eau.

Mais aussi phases d'un solide (carbone
amorphe, carbone diamant, carbone gra-
phite, nanotubes, fullérénes)

Certains de ces changements sont associées a des échanges d'énergie (VI-10)



1. Introduction et troisiéme principe de la
thermodynamique .(;, Lunds

phases gazeuse, liquide, solide

— Gaz : fluide compressible

— Liquide : fluide incompressible

— Solide : indéformable incompressible



1. Introduction et troisiéme principe de la
thermodynamique

Troisiéme principe de la thermodynamique

Lorsque la température d'un systéme tend vers le 0 absolu (qui ne peut jamais étre
atteint), son entropie tend vers 0.

ﬂofroé‘c\z nen ;&’W} W 750 %JC’V-—so



2. Concavité de S(U,V)

. 272 N, 7
2. té d v 4 Z )
Concavité de S(U,V) oncare S f;_\ Comvesmr \ V_~ . .
L'entropie S est une fonction concave de |'énergie interne et du volume

Scaﬂr*um ?@ou _isell velume 2V -V,
Qflyv\/«}.m,t 2 s — sl nod
Sys ki v bkl -uU, - U, 4 U
On dfanit M= 24 (2lfuihor b L
Shr= 2, 4S5y = g<uuv)4 g(UQ/V)
%wh\c Lo o 2\,‘: Losse Mo K«jl)‘?(be .o‘vb'baa«._-b\o'q-m“w«c
S enbopr= du %A\M bké  3C24.2V) = 2904, v)
ZSCK V) 2 8(U,, V) 4 S(U,,v) U V) > (U, V) 4S (U N)
2

? Juo: (Xl+u1 = Zu-




2. Concavité de S(U,V)

Vsehe 23 9 - p TSl
0 Nz o) ﬁ]q K 7—\*]«: Quy T
23X
V) + 8 U, W)
2.
Ty 2, V) « Sy W)
Uz WAL W AU Suv) > _/7:_,*_/— IS ‘ng :

=2 on en Hdk SCUY) & Veak encave.



2. Concavité de S(U,V)

M:c{’c. S’/MCA'M égncovc o l/
du-_ﬂs_rav > Tds: dus @V dse 1dn +FPdv
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VI~ Changements de phases 2. Concavité de S(U,V)

SU,V)

<0

3 2% ) o );,

rut vt/ DUw

- 3-4/’7”
Arcamot -Bebot
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3. Signes des capacités thermiques

Pour un systéme stable :

3. Signes des capacités thermiques
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3. Signes des capacités thermiques

Démonstration :

SMTTM N Kuo L T,e & £ e | daw T{g
T

= T2 &0 TST 5 Ta 4 okl vere 1af

i Cq s
. Cy <o ;4830 = iT<e” T3 >e

Tgtdslréw ~ = Ig ./ =T\ .- @%:EMM&%\?
S ekl G >0

Vleo{ Cr P~ f:ck e e Saisenvaowend = C)P>_“C>
Kez Ko SE Ke S o = KooKy o £ Lale Yepre
T < 2y Ve > T

N

?e_rejz &GN re W;/wdm%/ém Lc/ fue Vj‘gi// a T=de
( Ao Ky Do) /Leof/)m/’lys/c‘w espte,
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i ke <o

2
Heyu Cr,_CV _ TV %
K

= Cv,—q/>a

CY,>0

CU >—D Crl-—Cv 2_8

JKTEO efwj_éb

3. Signes des capacités thermiques

r)"w: ‘”_‘_Zf’

> undle Ko .

TV, X, & ke 29

= G2G20
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4. Convexité de U(S,V)

4. Convexité de U(S,V)

L'énergie interne est une fonction convexe de |'entropie et du volume

V= cke

i

W(S) eroissank o csnvexe
W= _pdV U\ UL
du= Tds -pd 24) =T 2o )

v

M)& Gocte  gigre o EQE,LL " ?_f_ 'b(—())]

Y 'b_ﬁ‘] T
'}\Jtzs— I 'B\I < i BV] k> - ._A/’V—- - _A.é-/ < J__.>O
AY

S(u,v)

14



4. Convexité de U(S,V)

AR pisabe 2°d 9_3% Do = Z('_g >
WV

On /M S gCH/U) WDM/ZVI(/ tocar. ..
= U (S V) conwxe

https://msampler.wordpress.com/2009/11/23/
convex-analysis-and-thermodynamics/
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VI~ Changements de phases 4. Convexité de U(S,V)

0*U (S,V)

ov?2

>0

DU M (3"/\0
FU(SY) oo adws
952~

% Ac”msmh
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VI - Changements de phases 5. Courbure des potentiels thermodynamiques

5. Courbure des potentiels thermodynamiques

Les potentiels thermodynamiques U, F, H, G sont des fonctions convexes de leurs
variables d'état extensives S et V et concaves de leurs variables intensives T et p. Jura

ku(s, )
9%H (S,p) <0
’ (S, p)

gdre

DEDINGIN
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6. Stabilité en termes de U(S,V)

6. Stabilité en termes de U(S,V)

pM W) a8 =k
AB - a
Al A
O\ HR (AN
/ v : v (/f—/\) I A
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7. Gaz de v.d.W., pallier de liquéfaction

7. Gaz de v.d.W., pallier de liquéfaction, régle de Maxwell

s atél@l'a}’ N P(V) aT c*c F(TV>
Fw gonvese 4 U de. 4T rav %F] - p <o
F b '?’_F. =~p ZP 9; R
et IO et
f* zv} ] 2
N &y /1,“5
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7. Gaz de v.d.W., pallier de liquéfaction

@ey& aLn«y‘a-QJ-m Ao Thaswell
o'(\s;d(rb T:c“c ch :—%/f,rd\/ ool —")CN

ARRACS
(6]
/ AF%—_/_pd‘/

A
AFﬁa C'MA“ /\22( g, s
AFP gevdtd \—~

L 2y
ﬁrwwf e (Losﬁh\szwx A=
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7. Gaz de v.d.W., pallier de liquéfaction

isothermes de VdW en coordonnées normalisées
3

pression réduite
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7. Gaz de v.d.W., pallier de liquéfaction

¢

ANeWasne.

Courbe de saturation, rosée, ébullition et domaines de phases

" & lied

r) isothermes de VdW en

i

0.8

pression réduite

0.6

0.4

0.2
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1. Introduction et troisiéme principe de la
thermodynamique

1. Introduction et troisiéme principe de la thermodynamique
Définition de phase

Domaine du systéme dans lequel certaines propriétés comme la densité, la capacité
calorifique, ... sont identiques, et qui peuvent se transformer les uns dans les
autres.

Exemples les plus connues : les phases de
I'eau : glace, eau liquide, vapeur d'eau.

Mais aussi phases d'un solide (carbone
amorphe, carbone diamant, carbone gra-
phite, nanotubes, fullérénes)

Certains de ces changements sont associées a des échanges d'énergie (VI-10)



1. Introduction et troisiéme principe de la
thermodynamique .(;, Lunds

phases gazeuse, liquide, solide

— Gaz : fluide compressible

— Liquide : fluide incompressible

— Solide : indéformable incompressible



1. Introduction et troisiéme principe de la
thermodynamique

Troisiéme principe de la thermodynamique

Lorsque la température d'un systéme tend vers le 0 absolu (qui ne peut jamais étre
atteint), son entropie tend vers 0.
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2. Concavité de S(U,V)
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2. Concavité de S(U,V)
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2. Concavité de S(U,V)
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VI~ Changements de phases 2. Concavité de S(U,V)

SU,V)
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3. Signes des capacités thermiques

Pour un systéme stable :

3. Signes des capacités thermiques
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3. Signes des capacités thermiques

Démonstration :
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3. Signes des capacités thermiques
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4. Convexité de U(S,V)

4. Convexité de U(S,V)

L'énergie interne est une fonction convexe de |'entropie et du volume
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4. Convexité de U(S,V)
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VI~ Changements de phases 4. Convexité de U(S,V)
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VI - Changements de phases 5. Courbure des potentiels thermodynamiques

5. Courbure des potentiels thermodynamiques

Les potentiels thermodynamiques U, F, H, G sont des fonctions convexes de leurs
variables d'état extensives S et V et concaves de leurs variables intensives T et p. Jura

ku(s, )
9%H (S,p) <0
’ (S, p)

gdre

DEDINGIN
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6. Stabilité en termes de U(S,V)

6. Stabilité en termes de U(S,V)

pM W) a8 =k
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7. Gaz de v.d.W., pallier de liquéfaction

7. Gaz de v.d.W., pallier de liquéfaction, régle de Maxwell
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7. Gaz de v.d.W., pallier de liquéfaction

isothermes de VdW en coordonnées normalisées
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7. Gaz de v.d.W., pallier de liquéfaction
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