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9. Coefficients calorimétriques

9. Coefficients calorimétriques

La calorimétrie est I'étude des échanges de chaleur. Elle s’est développée de maniére
trés empiriques, en regardant les relations entre changement de température et
échanges d'énergie. Nous allons prendre une approche plus formelle dans laquelle nous
définissons les coefficients calorimétriques a partir des fonctions d'état du systéme. Puis
nous ferons le lien avec I'expérience.
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9. Coefficients calorimétriques

Coefflcuents calorimétriques dépendant de Vet T
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9. Coefficients calorimétriques
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9. Coefficients calorimétriques
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Résumé :

Cv

;95| _au

9. Coefficients calorimétriques

5Q = CydT + TX24v
KT

Capacité thermique isochore du systéme

aTlv — aTlv C,M*\T‘@

19V :
U= V5T ; Coefficient de dilatation isobare
10V .
KT = ——— Coefficient de compressibilité isotherme

Voplr
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9. Coefficients calorimétriques

Coefficients calorimétriques dépendant de p et T “d”k‘ o p ; botsls s
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9. Coefficients calorimétriques
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Résumé :

9. Coefficients calorimétriques

6Q = CodT —a, TV(T, p)dp

aS JoH
= Capacité thermique isobare du systéme

aTlp 9Ty 4@!0%4.

_19v
 VoTlp

CG=T

Xp Coefficient de dilatation isobare
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9. Coefficients calorimétriques

Coefficients massiques et molaires
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9. Coefficients calorimétriques

Coefficient adiabatique, relation de Mayer et de Reech
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9. Coefficients calorimétriques

C\,-'f"__O“\i?l] —C'r 1'_3_\{'),(\]__3&’] :\IO(
r f

K 3T I VT T —F
e 2
2y + T & Nap = Cp » GG =TV
K+ W
28 Ralo. hen da “a.-—‘!Af,
y- % . _il!_ 31_“*_( ‘a_\L]s
<y 29 ¥ » T 2V g 9% 4T
/1731‘ va3 Ak

) 2T7 P
2 2 ar), g B8 A0 W] ek g
¢ ¥ V‘B\l ¢V T

54



g8y BV
2f 3% 3e T
B AV
P Je ST q
v= KXo
s

9. Coefficients calorimétriques
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9. Coefficients calorimétriques

Résumé :

Par définition, le coefficient adiabatique -y est

Cp
=T,
Relation de Mayer
2
C,—C =-2TV
KT
Relation de Reech
Cp KT
’)/ _= ? = —
v Ks
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9. Coefficients calorimétriques

Coefficients calorimétrique d’un solide
Stide Li 7(»«;& Zn wmsz%éé # m’%}m A ab'%éa.ﬁ*m
K.-r =0 &E = O
(Q =~ o4 awm ‘ay  dl=o V= ote

(B: GdT «TVgdy = GdT 2§ -
gQ :C\[dT,Q /QDJ/ :C\IJF

o

Pour un corps incompressible et sans dilatation thermique, C, = Cy

( aslide L‘T-u-v'q ,'Wem(lz) \:M)&?cw c
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1. Détermination expérimentale de la loi des GP

1. Détermination expérimentale de la loi des gaz parfaits
Observations historiques sur les comportements des gaz. F v T

Un paramétre parmi (p,V,T) est maintenu constant, on mesure |'évolution relative des
deux autres.

1662/1676 Loi de Boyle-Mariotte

pV =cte @ T = cte

1787 Loi de Charles

Apx AT @ V = cte



1. Détermination expérimentale de la loi des GP

1802 Loi de Gay-Lussac

AV <« AT Q@ p=cte
23 bt o PV = «T 4@
1811 Loi d’Avogadro

N=cte @ p,V, T = cte, quel que soit le gaz!

Corollaire, dans les conditions standard de température et de pression, 0°C et 1 atm le
volume d'une mole est indépendant du gaz et vaut 22.4 litres

V = «T o & pT o N
() X TF f = zue Velune



1. Détermination expérimentale de la loi des GP

Température et zéro absolu

Expérience : variation de la pression pour une variation de T a V =cte
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1. Détermination expérimentale de la loi des GP

En prenant une nouvelle origine pour la température, décalée de 273.15 degrés, on peut
écrire
pV =aT

avec w constante et T = 6 (°C)+273.15. Cette nouvelle température est la température
absolue, en Kelvin (K).

Combiné avec la loi d'Avogadro : F\/ f e N & &T /)‘/o(PRNT

pV = NRT

Loi des gaz parfaits.

R : constante des gaz parfaits R = 8.314 JK " tmol~!



2. Energie interne et enthalpie d'un Gaz parfait

2. Energie interne et enthalpie d’'un Gaz parfait Fv: NR’\—
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2. Energie interne et enthalpie d'un Gaz parfait
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2. Energie interne et enthalpie d'un Gaz parfait

Résumé

Pour un gaz parfait
dU = CydT dH = CpodT

Ces relations sont toujours valables, quelles que soient les types de
transformation.

Expérimentalement, C, et Cy sont indépendants de la température (dans une gamme
de température donnée, avec éventuellement des "marches")

De plus :
Pour une ransformation adiabatique réversible d'un gaz parfait

pV7 = cte (avec v = %) démontré exercice 2 série 2.

R

10
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3. Théorie cinétique du gaz parfait de Maxwell
3. Théorie cinétique du gaz parfait de Maxwell
Hypothéses de base :

— Le gaz est constitué de particules trés petites qui ne peuvent que subir des
interactions de portée extrémement courte devant la distance moyenne entre particules,
et de type choc élastique ("modéle de sphéres dures")

— A I'équilibre, il y a une distribution isotrope du gaz et des vecteurs vitesses des
particules. Aucune position de |'espace et aucune direction n'est privilégiée.
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell

Lien entre pression et vitesse
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell

Equipartition de |'énergie Ba 5

Postulat de Boltzman : chaque degré de liberté f du systéme stocke la méme quantité
d'énergie
Energie moyenne par particule et par degré de liberté f

<E>:%kBT Rg coshnte A Bdhrwan

Cdoyrt e Lbol?” = Wartable inddpendals wetlad i shcke do dos,
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell
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3. Théorie cinétique du gaz parfait de Maxwell

Résumé :

» Un modéle simple de sphéres dures permet d'arriver a

—_

2
PV = ZNNA(ES™)
» Avec le principe d'équipartition de |'énergie de Boltzman

cin

1
<Etrans> — 35/(5 T

pV = NNakg T = NRT
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4. Capacité calorifique des gaz parfaits et des solides

4. Capacité calorifique des gaz parfaits et des solides
O won 6f dU = CydT
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4. Capacité calorifique des gaz parfaits et des solides
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4. Capacité calorifique des gaz parfaits et des solides
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4. Capacité calorifique des gaz parfaits et des solides

Valeurs expérimentales : R 93
ol cy Cp cv (C\/_“;\‘/ ”
J/(kg.K) | J/(kg.K) | J/(mol.K) | J/(mol.K) | P
e | He 5.18 3.38 20.8 12.5 8.3 1.67
o | Ne 1.03 0.62 20.8 12.47 8.3 1.67
o | N2 1.04 0.74 29.09 20.7 8.4 1.4
oo | O 0.91 0.65 29.43 21.05 8.4 1.4
CO> 0.83 0.64 36.96 28.46 8.5 1.3
v H,0 (100°C) | 2.01 1.46 34.32 25.95 8.4 1.32
{;3 éq:%k:%—ﬁ :/177115 C’r: .siﬂ 52'0/:?"S Y= ‘E;z % : Afﬁ-‘L

] =3
}é-s
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