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4. Taux de production d’entropie
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Lundi sem 12

but : trouve de taux volumique de production desenfunctiaactions

On report d'Euler : pour systems de volume V
: U= TS-pV+MANA

on considere un petit volume SV autou det T
,p,Mahomogenes dans IV

MeuSV; SesSU VISU
. Nat nSV - uS= Ts-pX+Mana

u = Ts - p+MnAdU =TdS-pdVMndNa deviend(u- Td(s(X)-+
du = Tds+Madra eu = Tst Mana Tell Mana
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On churche Os 5
= Ts-FJs is :M-*Ja Prsuppose On = o

in = Un-Ja (t - 55) = 1)-ju)- (a-Tn)
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5. Loi de Fourier

Di!érentes formes de transfert de chaleur
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you van th wode de transfert de etale
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"Loi"de Fourier loi phinomonologique
·
Un gradient de Tprovoque un courant de chalerJade

· plus le gradient est slera plus/ja) eleres temps et surface

· On a une dependance linsai Ja =
ceT

· lo coefficient depend du materiau.
On a un systems indefarmable incoup.
6V = de SQ = d Ja = JuFindTunan

a
a

Ju = -X ** X conductivit thomique
X = Ww-k

-



IX - Transport 5. Loi de Fourier

23

quandecontinue
dir (and) = div(by
FIT)=ET =A
Gu = Un + XDT solide

,
ichores Vide

/SV ↓ (Su) = SCdTdU =
CdT

&Gcapacitthemisea
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= expacits thermique massage

p
masse volumique.

bu) : SdT =
du = cT pendant at
i = cap

i = Un +XT =

CAT
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Résumé

Equation de propagation de la chaleur ; permet (en principe) de déterminer
T (x , y , z , t)

Version "propre" :
∂T

∂t
=

λ

c→ε
↑2T

Version avec "source de u"
∂T

∂t
=

λ

c→ε
↑2T +

ϱu
c→ε

Le terme source de u permet de rendre compte d’un apport d’énergie par unité de
volume par un processus non pris en compte dans le modèle thermodynamique. Par
exemple la chaleur générée par la fission dans un barreau de combustible
nucléaire.
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IX - Transport 5. Loi de Fourier

Loi de Fourier et conductivités typiques :

ωjU(ωr , t) = ↓λω↑T (ωr , t)

Valeurs de λ :

Matériau λ en W.m↓1.K↓1

Bois 0.1 à 0.4
Polystyrène expansé (Sagex) 0.036
Acier 50
Cuivre 390
Diamant 1000 à 2600
Pierre calcaire 1.5
Verre 1
Air sec 0.024
Laine de verre 0.04
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Exemple 1 : conduction à travers une fenêtre
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forate vitre vere d'spaisser 1= 4 mm

d'airs ot = 2us
2

AT = Tex-Tinr = -20%hde tempera a

rene : X= W m
+ k-

hypothese : regime stationnaire T dans la vitra independante det

faces laterales isless
- Ju Her Tr,y,yet) = T(a)

equation de propagation. = 0 DT
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d = o Thx) = an +ba elb constantes

conditions aux limites Tlo) = Tink T/l)= Text

T(o) = b = Tint T() = Text =
al

+ Tint es =Tin
T(x)= x + Tint T

A T(a)
&

i
Text I

l

=
o

2) Ju = ·
XT

=-X =-X ==J
IQ = -XTt Ip =- 110W = 10



IX - Transport 5. Loi de Fourier

Exemple 2 : Température dans une plaque de combustible nucléaire

On considère une plaque de combustible nucléaire rec-
tangulaire, d’épaisseur l , dont les faces latérales sont
parfaitement isolées et les grandes faces maintenues à
la température T0 .
La réaction nucléaire est à l’origine d’un dégagement
d’énergie dont la puissance volumique pQ est connue.
Etablire le profil de température dans la plaque en régime
stationnaire.
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Exemple 3 : Onde de chaleur

Exemple de conditions aux limites (boundary conditions) dépendant du temps
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6. E!usivité

Certains matériaux sont plus chaud au toucher que d’autres, même s’ils sont à la même
température
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mercede
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IX - Transport 6. E!usivité

E =
√

ελc→

Si on met 2 matériau avec T1 et T2 en contact et qu’ils ont les e!usivités E1 et E2
et

Ti =
E1T1 + E2T2

E1 + E2
Exemple :
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JK "m-2 g-12 [SI]

Eaca = 14
/

000 [SI] man 37 % objet 20 %

Eboil = 100
- wa/bois Ti = 28 %

Emanu =
500 - main/acie Ti = 20

,
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7. Loi de Fick

La loi de Fick régit la di!usion d’espèce en l’absence de convection.
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deplacementeindividuals d'atomus en l'absence de convectives

en conditions "habituals" dans un fleide : la cervecher

gogue
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= ta-a equation de continuit

↳

FiskPhinminologuemileu residin

u=-Dana) =ada =+DAD
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IX - Transport 7. Loi de Fick

Equation de continuité :

∂nA
∂t

= ϱA ↓ ω↑ ·ωjA

Loi de Fick
ωjA(x , t) = ↓Dω↑nA

D coe"cient de di!usion

Equation de la di!usion
∂nA
∂t

= ϱA +Dω↑2nA
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8. Généralisation, formalisme de Onsager

Exemple : conduction de charges électriques.
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milieu indiformable/incompressible-

u(s
,

V
,
SN3) dU = TdS- + GMdNAY du = ids + ENAdnaG

+ lauant de changes electriques Qe que desite volumique de changes
T

Champ electrique E responsable du dipla cement des De

on definity = E
= -Y Yest le potential slectrique (V.

!

bi d'Ohm Je = -K * Y Je courant de De

k conductivits electrique
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Q chayes in Coulomb Je :
Cui's"

= Am

59 horogins a E Vm-

k = Au-v"m = AV+m+

Gkea
+

m

(M = RI = V = 2A - AV" = r
+

(p = T resistivity electrique)
Qe

S Le provoe Te canat Umotia O Ma Ja Na
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M/s
, 3Nab) +> M(S

, Q ENAY] u(s, ge , Gray)
du =

TdS + YdQe + CMAdNal
du =- Tds + Ydge + GMAdnn

ds

=)
= ju . ((E) +[.() + 5. . 5/-)

->

par definition on appelle forces thodynamiques F,
telles

que Ts = Ji · F;
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Formalisme de Onsager
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Tutcouant Jo de la grandeur i pout se mettre
-

sous la forme Ji : Lin Fr
Courant : dependance linaires des forces

(contient Ohm
,
Fick

,
Foria) Masenplus les

phonemines croi's

Si on a uniquement un courant de I Ju = Luu Fu

In : (unF/E) = Lun =-Lun X =
Lun
F2

Fornier In =

-XT

↑,

S
Lau = XT2
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Arec courant de Q2 et deMe e Ta
In "effet Pelletia"
jet-ohm

↳So be ecouple edlectrique
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Couplage entre coe"cients, e!et thermoélectriques

42

↓-U
effe then deteaa
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X - Introduction à la physique statistique

Plan du cours

I - Introduction
II - Premier principe
III - Second principe
IV - Fonctions thermodynamiques et équilibres
V - Gaz parfait et gaz de van der Waals ; théorie cinétique des gaz
VI - Changements de phases
VII - Machines thermiques
VIII - Thermochimie
IX - Transport
X - Physique statistique
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1. Introduction

2. Définitions, Hypothèses fondamentales

3. Statistique de Boltzman
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X - Introduction à la physique statistique 1. Introduction

1. Introduction, motivation

↭ On ne peut pas modéliser intégralement un système de 1023 particules

↭ la thermo classique permet une description macroscopique

↭ le but de ce chapitre est de compléter le lien entre microscopique et macroscopique

↭ vous aurez un cours entier de physique statistique en 3ème année

↭ nous allons voir les implications accessibles de la statistique de Boltzman
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2. Définitions, Hypothèses fondamentales

Définition :

On appelle nombre de configurations d’un système dans un état donné, le nombre
d’états microscopiques qui ont le même état macroscopique
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Exemple : des a 20faces un de Ei =
valar offices pr lafra

Nde's

Noes

un tingeotgitraje nogeneade trage
-

1 de Ntirage grandn 10dootirages
Every

5des Ntirages 10000 tirages
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X - Introduction à la physique statistique 2. Définitions, Hypothèses fondamentales

Hypothèse fondamentale :

La fluctuation microscopique est très rapide : le système explore les états
microscopiques d’un état macroscopique sur une échelle de temps bien plus courts que
le temps caractéristique d’évolution des grandeurs macroscopiques

On a une équiprobabilité des états microscopiques
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Tonote systems so comportat
couve les des "non pipos"

l'stat observe macroscopiquement correspond a l'stat le plus
probable


