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4. Taux de production d’entropie
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4. Taux de production d'entropie
On chache 7o S - 07 _ 7’/*; ,;_-3/.‘\7“/; @:w@,:o
ﬂ. = 7, - i?—)’ et RN = - =
I (el TR) L AT 2 e (T
%V (Ee- F) - £TF 2 pe 0 o 2T

—

ALY Thyy) Foosoic A & vedoed  VIFE) - VF.Z 4 FPE

>4 Vh = Sppe 4P 7
-

Og =

vﬁ \\J\\l

<
RIS
T
¥1M
N
Tl

|

S

20



5. Loi de Fourier

5. Loi de Fourier 70‘ﬂmw M (ool & 7(@47&4/ P e/a,é/

Différentes formes de transfert de chaleur
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5. Loi de Fourier
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5. Loi de Fourier
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5. Loi de Fourier
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5. Loi de Fourier

Résumé

Equation de propagation de la chaleur; permet (en principe) de déterminer
T(x,y, zt)

Version "propre" :
oT A

2
ot c*,ov T

Version avec "source de u"
oT A v2 Oy

ot c*p c*p

Le terme source de u permet de rendre compte d'un apport d'énergie par unité de
volume par un processus non pris en compte dans le modéle thermodynamique. Par
exemple la chaleur générée par la fission dans un barreau de combustible

nucléaire.
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5. Loi de Fourier

Loi de Fourier et conductivités typiques :

e

Ju(P t) = —AVT(7 t)

&

Valeurs de A :
Matériau ‘ Aen Wm 1K1
Bois 0.1a04
Polystyréne expansé (Sagex) 0.036
Acier 50
Cuivre 390
Diamant 1000 a 2600 «—
Pierre calcaire 1.5
Verre 1
Air sec 0.024
Laine de verre 0.04

%aekr,\,,{os *17
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5. Loi de Fourier

Exemple 1 : conductlon a travers une fenétre
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5. Loi de Fourier
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5. Loi de Fourier

Exemple 2 : Température dans une plaque de combustible nucléaire

To

To

On considére une plaque de combustible nucléaire rec-
tangulaire, d'épaisseur /, dont les faces latérales sont
parfaitement isolées et les grandes faces maintenues a
la température Ty .

La réaction nucléaire est a I'origine d'un dégagement
d'énergie dont la puissance volumique pg est connue.
Etablire le profil de température dans la plaque en régime
stationnaire.
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5. Loi de Fourier

Exemple 3 : Onde de chaleur

Exemple de conditions aux limites (boundary conditions) dépendant du temps
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6. Effusivité

6. Effusivité

Certains matériaux sont plus chaud au toucher que d'autres, méme s'ils sont a la méme
température
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6. Effusivité

E=ypic Tk 'wte? [s1)

Si on met 2 matériau avec T et T, en contact et qu'ils ont les effusivités E; et Ep
et

_ATL+ET
L El + E2
Exemple :
Eotm = A 000 [SI] pros GFC  obier Lot
Evers = &oo [ WO-‘“/LS(S Ty =28¢
Emon - 2OP = WM/W Tt '—LO/S
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6. Effusivité

E lex /Fe&uc

Bo0o - 6o K
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7. Loi de Fick

7. Loi de Fick

La loi de Fick régit la diffusion d'espéce en I'absence de convection.

Initially After some time
Paul Shewmon
Diffusion
in Solids o r
Secnddiion 100% 100%,
0 : —> 0 _ >
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7. Loi de Fick
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7. Loi de Fick

Equation de continuité :

anA E S
o ATV
Loi de Fick
jA(X, t) = —DRVnA
D) coefficient de diffusion tgrl
Equation de la diffusion
anA . =9
W =0a+ DA'V na
An,

Fin de ae auielr ou yavgmmit



8. Généralisation, formalisme de Onsager

8. Généralisation, formalisme de Onsager

Exemple : conduction de charges électriques. ilren JVnAeFuMM /.m
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8. Généralisation, formalisme de Onsager
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8. Généralisation, formalisme de Onsager
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8. Généralisation, formalisme de Onsager

Formalisme de Onsager
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8. Généralisation, formalisme de Onsager
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8. Généralisation, formalisme de Onsager

Couplage entre coefficients, effet thermoélectriques
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X - Introduction a la physique statistique
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Plan du cours

| - Introduction
[I - Premier principe
Il - Second principe
IV - Fonctions thermodynamiques et équilibres
V - Gaz parfait et gaz de van der Waals; théorie cinétique des gaz
VI - Changements de phases
VIl - Machines thermiques
VIII - Thermochimie
IX - Transport
X - Physique statistique



1. Introduction

2. Définitions, Hypothéses fondamentales

3. Statistique de Boltzman



1. Introduction

1. Introduction, motivation

0%3 particules

» On ne peut pas modéliser intégralement un systéme de 1
» la thermo classique permet une description macroscopique

» le but de ce chapitre est de compléter le lien entre microscopique et macroscopique
» vous aurez un cours entier de physique statistique en 3éme année

» nous allons voir les implications accessibles de la statistique de Boltzman



2. Définitions, Hypothéses fondamentales

2. Définitions, Hypothéses fondamentales

Définition :

On appelle nombre de configurations d'un systéme dans un état donné, le nombre
d'états microscopiques qui ont le méme état macroscopique
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2. Définitions, Hypothéses fondamentales
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2. Définitions, Hypothéses fondamentales

Hypothése fondamentale :

La fluctuation microscopique est trés rapide : le systéme explore les états
microscopiques d'un état macroscopique sur une échelle de temps bien plus courts que
le temps caractéristique d'évolution des grandeurs macroscopiques

On a une équiprobabilité des états microscopiques
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