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1. Introduction

1. Introduction, motivation

0%3 particules

» On ne peut pas modéliser intégralement un systéme de 1
» la thermo classique permet une description macroscopique

» le but de ce chapitre est de compléter le lien entre microscopique et macroscopique
» vous aurez un cours entier de physique statistique en 3éme année

» nous allons voir les implications accessibles de la statistique de Boltzman



2. Définitions, Hypothéses fondamentales

2. Définitions, Hypothéses fondamentales

Définition :

On appelle nombre de configurations d'un systéme dans un état donné, le nombre
d'états microscopiques qui ont le méme état macroscopique
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2. Définitions, Hypothéses fondamentales

Hypothése fondamentale :

La fluctuation microscopique est trés rapide : le systéme explore les états
microscopiques d'un état macroscopique sur une échelle de temps bien plus courts que
le temps caractéristique d'évolution des grandeurs macroscopiques

On a une équiprobabilité des états microscopiques
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3. Statistique de Boltzman

Entropie de Boltzman : systéme isolé



3. Statistique de Boltzman
Densité de probabilité d'un état d'énergie donnée

Q1 (U1)2(Ug — Uy)

p(h) = Q(lo)
S (Uy) =kglnQy — Ql(Ul):exp<SllE:1))
p(Un) Q (Up) = Oy (Uh) O (U Uh) = exp [51 (L) + Z(UO - Ul)]
Développement limité autour de la valeur d’équilibre Ul
S1 (V1) = S1 (Uy) + (UL — Uy) gj (U1 Ur) ?;5121

a I'équilibre entropie max : ai =0 en U;. Pareil pour S,.



3. Statistique de Boltzman

2 8 51 2 8252
(Ul)Qo—eXp |:k <51 (Ul) (Ul Ul) 8U2 +52 (Uo Ul) (Ul Ul) 8U22>:|
_ 5 (U1) + 5 (Uo —Ul) (Ul —Ul) 8251 8252
p(U1) Qo = exp [ ks P kg (auf - aug)
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o2 Uz = U3

positif car S fonction concave de U,

p(Up) xexp | —
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3. Statistique de Boltzman

Important! On a une distribution Gaussienne!

Normalisation (intégrale proba vaut 1) et avec :

oo 2 7T
/ e ¥ dx =4/—
— oo a
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3. Statistique de Boltzman

U) = ——
p(U) o271 202

U; et S; extensives donc proportionnelles a Np.

Donc 02 o Ng car 1/02 « S1/U? « No/ N3

512
L oo [_(Ul—Ul)

Normalisation par le nombre de particules Ny

(Ur/No — Ur/ No)?
202/ N3

p(Ur) = exp
V2

02/ N2 <1/ Ng

p(U1) Gaussienne dont la largeur a mi-hauteur est proportionnelle a 1/+/Np!
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3. Statistique de Boltzman

Distribution de Boltzman
On cherche la répartition statistique des énergies des particules dans le gaz.

Espace des phases : Espace de dimension 6/, représentant les positions et quantité de
mouvement de chacune des N, particules . Chaque point de cet espace est un état.
chacune de ces configuration microscopique est équiprobable, mais certaines aménent a
un méme macroscopique donné, et |'état d'équilibre est de loin le plus probable. p, et
pp densité des points dans cet espace pour les sous espaces position et quantité de
mouvement.
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3. Statistique de Boltzman

Gaz parfait de particules monoatomiques : I'énergie totale est la somme de toutes les
énergies cinétiques de toutes les particules. La position n'a pas d'importance, seule la
quantité de nouvement est importante. Pas de rotation.

E(x,p) = p*/2m = (p3 + p; + p2)/2m

Les états de méme énergie se trouvent dans une hypersphére de |'espace des quantités
de mouvement de rayon +/(2mE) .

On peut donc calculer Q(U) le nombre d'états d'énergie U a 6U prés : coquille
sphériques entre U et U + dU. Seule la partie sur p change quelque chose sur x on
retrouve le volume de I'espace des phases * la densité volumique de points.

Nﬂ 3N/2 (2mU)3N/2

QU) = popV oy (3N/2)!
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3. Statistique de Boltzman

Distribution des vitesses Boltzmann

Densité de probabilité pour une particule d'avoir p; x obtenue par I'intégration sur un
"hyperanneau" de |'expression (1)

_ 1 Piy/2m
P(PL) =\ Smieg T P [ kBT]

Densité de probabilité pour une particule d'avoir Vi = v; € + v1,,€, + v1; €,

L. m 132 (1/2)mv?
p(¥) = {27rkBT} exp [_kBT]
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densité de probabilité pour || On recommence : on les trouve dans une coquille
sphérique de rayon v... mais cette fois 3D

nombre de molécules dont la norme de
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Vitesse moyenne

© 8kg T
= d =
Vim /0 p(v) vdv p—
vitesse quatratique moyenne
®© 3kg T
() = [ p(v)viar = =22
0 m

vitesse la plus probable
2kg T
m

Vo
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3. Statistique de Boltzman

Généralisation
Sans échange de matiére, pour un systéme en contact avec un thermostat & T, pour un
état s d'énergie E;, densité de probabilité :

Es

p(Es) e fBT

Si plusieurs états ont la méme énergie E, g(E) densité d'états d'énergie E

E

p(E) o« g(E)e T

Normalisation : [, p(E)dE =1
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