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Plan du cours

I - Introduction
II - Premier principe
III - Second principe
IV - Fonctions thermodynamiques et équilibres
V - Gaz parfait et gaz de van der Waals ; théorie cinétique des gaz
VI - Changements de phases
VII - Machines thermiques
VIII - Thermochimie
IX - Transport
X - Physique statistique
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1. Introduction, motivation

▶ On ne peut pas modéliser intégralement un système de 1023 particules

▶ la thermo classique permet une description macroscopique

▶ le but de ce chapitre est de compléter le lien entre microscopique et macroscopique

▶ vous aurez un cours entier de physique statistique en 3ème année

▶ nous allons voir les implications accessibles de la statistique de Boltzman
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2. Définitions, Hypothèses fondamentales

Définition :

On appelle nombre de configurations d’un système dans un état donné, le nombre
d’états microscopiques qui ont le même état macroscopique

5



X - Introduction à la physique statistique 2. Définitions, Hypothèses fondamentales

6



X - Introduction à la physique statistique 2. Définitions, Hypothèses fondamentales

Hypothèse fondamentale :

La fluctuation microscopique est très rapide : le système explore les états
microscopiques d’un état macroscopique sur une échelle de temps bien plus courts que
le temps caractéristique d’évolution des grandeurs macroscopiques

On a une équiprobabilité des états microscopiques
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3. Statistique de Boltzman

Entropie de Boltzman : système isolé
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Densité de probabilité d’un état d’énergie donnée

p(U1) =
Ω1(U1)Ω2(U0 − U1)

Ω(U0)

S1 (U1) = kB lnΩ1 −→ Ω1 (U1) = exp

(
S1 (U1)

kB

)
p (U1)Ω (U0) = Ω1 (U1)Ω2 (U0−U1) = exp

[
S1 (U1) + S2 (U0 − U1)

kB

]
Développement limité autour de la valeur d’équilibre Ū1

S1 (U1) = S1
(
U1

)
+

(
U1 − U1

) ∂S1

∂U1
+

1
2
(
U1 − U1

)2 ∂2S1

∂U2
1

à l’équilibre entropie max : ∂S1
∂U1

= 0 en Ū1. Pareil pour S2.
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p (U1)Ω0 = exp

[
1
kB

(
S1

(
U1

)
+

1
2
(
U1 − U1

)2 ∂2S1

∂U2
1
+ S2

(
U0 − U1

)
+

1
2
(
U1 − U1

)2 ∂2S2

∂U2
2

)]

p (U1)Ω0 = exp

[
S1

(
U1

)
+ S2

(
U0 − U1

)
kB

]
exp

[(
U1 − U1

)2

2kB

(
∂2S1

∂U2
1
+

∂2S2

∂U2
2

)]
Avec

1
σ2 = − 1

kB

(
∂2S1

∂U2
1
+

∂2S2

∂U2
2

)
positif car S fonction concave de U,

p (U1) ∝ exp

[
−
(
U1 − U1

)2

2σ2

]

10



X - Introduction à la physique statistique 3. Statistique de Boltzman

Important ! On a une distribution Gaussienne !

Normalisation (intégrale proba vaut 1) et avec :∫ +∞

−∞
e−ax2

dx =

√
π

a
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p (U1) =
1

σ
√

2π
exp

[
−
(
U1 − U1

)2

2σ2

]
U1 et S1 extensives donc proportionnelles à N0.

Donc σ2 ∝ N0 car 1/σ2 ∝ S1/U2
1 ∝ N0/N2

0

Normalisation par le nombre de particules N0

p (U1) =
1

σ
√

2π
exp

[
−
(
U1/N0 − U1/N0

)2

2σ2/N2
0

]

σ2/N2
0 ∝ 1/N0

p(U1) Gaussienne dont la largeur à mi-hauteur est proportionnelle à 1/
√
N0 !
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Distribution de Boltzman

On cherche la répartition statistique des énergies des particules dans le gaz.

Espace des phases : Espace de dimension 6Np représentant les positions et quantité de
mouvement de chacune des Np particules . Chaque point de cet espace est un état.
chacune de ces configuration microscopique est équiprobable, mais certaines amènent à
un même macroscopique donné, et l’état d’équilibre est de loin le plus probable. ρx et
ρp densité des points dans cet espace pour les sous espaces position et quantité de
mouvement.
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Gaz parfait de particules monoatomiques : l’énergie totale est la somme de toutes les
énergies cinétiques de toutes les particules. La position n’a pas d’importance, seule la
quantité de nouvement est importante. Pas de rotation.

E (x , p) = p2/2m = (p2
x + p2

y + p2
z )/2m

Les états de même énergie se trouvent dans une hypersphère de l’espace des quantités
de mouvement de rayon

√
(2mE ) .

On peut donc calculer Ω(U) le nombre d’états d’énergie U à δU près : coquille
sphériques entre U et U + δU. Seule la partie sur p change quelque chose sur x on
retrouve le volume de l’espace des phases * la densité volumique de points.

Ω (U) = ρpρxV
N 3N

2U
π3N/2 (2mU)3N/2

(3N/2)!
(1)
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Distribution des vitesses Boltzmann

Densité de probabilité pour une particule d’avoir p1,x obtenue par l’intégration sur un
"hyperanneau" de l’expression (1)

p (p1,x ) =

√
1

2πmkBT
exp

[
−p2

1x/2m
kBT

]

Densité de probabilité pour une particule d’avoir v⃗1 = v1,x e⃗x + v1,y e⃗y + v1,z e⃗z

p (⃗v1) =

[
m

2πkBT

]3/2

exp

[
− (1/2)mv2

1
kBT

]
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densité de probabilité pour |⃗v | On recommence : on les trouve dans une coquille
sphérique de rayon v ... mais cette fois 3D

p (v) =

(
m

2πkBT

)3/2

4πv2e
−
(1/2)mv2

kBT
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Vitesse moyenne

vm =
∫ ∞

0
p (v) vdv =

√
8kBT
πm

vitesse quatratique moyenne

⟨v2⟩ =
∫ ∞

0
p (v) v2dv =

3kBT
m

vitesse la plus probable

v0 =

√
2kBT
m
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Généralisation

Sans échange de matière, pour un système en contact avec un thermostat à T , pour un
état s d’énergie Es , densité de probabilité :

p(Es) ∝ e
− Es

kBT

Si plusieurs états ont la même énergie E , g(E ) densité d’états d’énergie E

p(E ) ∝ g(E )e
− E

kBT

Normalisation :
∫
E p(E )dE = 1

p(E ) =
1
Z
g(E )e

− E
kBT
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