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1. Détermination expérimentale de la loi des GP

1. Détermination expérimentale de la loi des gaz parfaits
Observations historiques sur les comportements des gaz.

Un paramétre parmi (p,V,T) est maintenu constant, on mesure |'évolution relative des
deux autres.

1662/1676 Loi de Boyle-Mariotte

pV =cte @ T = cte

1787 Loi de Charles

Apx AT @ V = cte



1. Détermination expérimentale de la loi des GP

1802 Loi de Gay-Lussac

AV <« AT Q@ p=cte

1811 Loi d’Avogadro

N =cte @ p,V, T = cte, quel que soit le gaz!

Corollaire, dans les conditions standard de température et de pression, 0°C et 1 atm le
volume d'une mole est indépendant du gaz et vaut 22.4 litres
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Température et zéro absolu

Expérience : variation de la pression pour une variation de T a V =cte
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En prenant une nouvelle origine pour la température, décalée de 273.15 degrés, on peut
écrire
pV =aT

avec w constante et T = 6 (°C)+273.15. Cette nouvelle température est la température
absolue, en Kelvin (K).

Combiné avec la loi d"Avogadro :

pV = NRT

Loi des gaz parfaits.

R : constante des gaz parfaits R = 8.314 JK " Imol~!
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2. Energie interne et enthalpie d'un Gaz parfait

Résumé

Pour un gaz parfait
dU = CydT dH = CpodT

Ces relations sont toujours valables, quelles que soient les types de
transformation.

Expérimentalement, C, et Cy sont indépendants de la température (dans une gamme
de température donnée, avec éventuellement des "marches")

De plus :
Pour une ransformation adiabatique réversible d'un gaz parfait

pV7 = cte (avec v = %) démontré exercice 2 série 2.
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3. Théorie cinétique du gaz parfait de Maxwell
Hypothéses de base :

— Le gaz est constitué de particules trés petites qui ne peuvent que subir des
interactions de portée extrémement courte devant la distance moyenne entre particules,
et de type choc élastique ("modéle de sphéres dures")

— A I'équilibre, il y a une distribution isotrope du gaz et des vecteurs vitesses des
particules. Aucune position de |'espace et aucune direction n'est privilégiée.
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Lien entre pression et vitesse
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3. Théorie cinétique du gaz parfait de Maxwell

Equipartition de |'énergie

Postulat de Boltzman : chaque degré de liberté f du systéme stocke la méme quantité
d'énergie

Energie moyenne par particule et par degré de liberté f

1
E)=-kgT
(E) 5 ke
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3. Théorie cinétique du gaz parfait de Maxwell

Résumé :
» Un modéle simple de sphéres dures permet d'arriver a
2 trans
pV = gNNA<Ecin )
» Avec le principe d'équipartition de |'énergie de Boltzman
trans 1
<Ecin > = 3§kBT

pV = NNakg T = NRT
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Valeurs expérimentales :

4. Capacité calorifique des gaz parfaits et des solides

*

*

o cy [N cy &—cv |y

J/(kg.K) | J/(kg.K) | J/(mol.K) | J/(mol.K) | P
He 5.18 3.38 20.8 12.5 8.3 1.67
Ne 1.03 0.62 20.8 12.47 8.3 1.67
N2 1.04 0.74 29.09 20.7 8.4 1.4
o)) 0.91 0.65 29.43 21.05 8.4 1.4
COz 0.83 0.64 36.96 28.46 8.5 1.3
H,0 (100°C) | 2.01 1.46 34.32 25.95 8.4 1.32
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4. Capacité calorifique des gaz parfaits et des solides

Capacité calorifique des solides
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4. Capacité calorifique des gaz parfaits et des solides

Résumé, pour un gaz parfait :

U= Nc, T H = Nc, T cV:gR cpz#R ’y:fif2
f cy p v
Gaz monoatomique 3]13/2R | 5/2R | 5/3=1.67
Gaz diatomique (sans vibration) 5|5/2R | 7/2R | 7/5=14
Gaz diatomique (avec vibration) 7| 7/2R | 9/2R | 9/7=1.28

Pour les solides, modéle de Dulong-Petit

Capacité calorifique molaire, par moles d'atomes !

c=3R
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5. Loi de Dalton

Dans un gaz parfait il n'y a pas d'intéraction des molécules de gaz entre elles autres que
par des chocs élastiques.

Dans un mélange parfait de gaz parfaits, les molécules des différentes espéces chimiques
n'intéragissent que par chocs élastiques

Exemple : air composé de Ny, Oy, Ar, CO,, H5O...

Considérons i espéces chimiques (gaz parfaits) a la température T avec N; le nombre
de moles pour chaque espéce.

N=)Y N

i
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5. Loi de Dalton

Si les atomes / molécules du mélange n'interagissent pas entre elles sauf par chocs
élastiques

U=y U
i
Si le mélange est parfait, il se comporte comme un gaz parfait et alors

pV = NRT
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5. Loi de Dalton

Soit p; la pression partielle de |'espéce i. C'est par définition la pression qu'aurait
I'espéce i si elle occupait seule le volume V

p,'V == N,RT

La pression totale est alors la somme de toutes les pressions partielles. C'est la foi de

Dalton
p=).pi
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5. Loi de Dalton

soit

Xi =
la fraction molaire de |'espéce i.

pi = Xip

Considérons chaque espéce prise a la pression p du mélange. Le volume partiel V; est le
volume qu'occuperait |'espéce i.
pVi = N;RT

alors
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Potentiel de Lennard Jonnes

v 1

6. Au dela du gaz parfait : van der Waals
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6. Au dela du gaz parfait :

Au final, I'équation d'état devient

2

N
(p+ay)(V = bN) = NRT

a et b dépendent du gaz. n = N/V — 0 on retrouve le gaz parfait.

van der Waals
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Exemple : Gaz SFg, a = 0, 786 m® Pa/mo|2; b =8,786.10"°m3/mol.

6. Au dela du gaz parfait : van der Waals

Comparaison des isothermes VAW (bleue) et GP (grise) a T=273K

SF6 (1 mole)
200

150

‘ession (bar)

100

— VAW
— GP

volume(litres)
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7. lsothermes en coordonnées réduites

Coordonnées normalisées aux valeurs critiques

pression réduite

2.5

0.5 -

isothermes de VdW en coordonnées normalisées

B e e e B e e e e e B LN s S s s e |
0.5 1 15 2 25 3

volume réduit
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