I.

Themodynamique
Corrigé Série Supplémentaire 2:
Equation de la chaleur

S. Guinchard*

Section de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse

(Supervised by Prof. J.P. Ansermet)’
(Dated: May 25, 2022)

EXERCICE 1: THERMALISATION DE DEUX BLOCS EN CONTACT THERMIQUE

A. Questions analytiques

1. En régime stationnaire, montrer que les puissances thermiques exercées par I’environnement sur le

*

premier bloc, par le premier bloc sur le deuxiéme, et par le deuxiéme bloc sur I’environnement sont
égales et écrites comme,

01 12 20
Py =PYY = P3P = PS5V (1)

Solution: En régime stationnaire, ’entropie de chaque bloc est constante,

S;=0 i=1,2. (2)

Les blocs sont des systémes simples. Par conséquent, le taux de production d’entropie de chaque
bloc est nul. Dans ce cas, la variation d’entropie de chaque sous-systéme est donnée par

(01) (12)
P =1y

=99 09— p=pl?
1 Tl(Sl) Q Q 5
pU2) _ p(20) (3)
Sp=-9 9 _g— pU?d=p2,
2 T»(S5) Q Q
Par conséquent
Py = Pgl) _ Cglz) _ Cgzo) (4)

. Considérez maintenant que les deux blocs sont constitués de N7 et No moles de métal respective-

ment. Ils sont initialement séparés et a températures T et T5. Lorsqu’ils sont mis en contact, ils
atteignent progressivement 1’équilibre thermique.

i) Déterminer la température finale Ty du systéme de deux blocs & 1’équilibre thermique.

Solution: Etant donné que le systéme est isolé, I’énergie interne est constante. Par conséquent,
la variation d’énergie interne AU du systéme est nulle,

AU = AU, + AU, = 0. (5)

salomon.guinchard@epfl.ch

T Laboratoire de Physique des Matériaux Nanostructurés, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse

mailto:salomon.guinchard@epfl.ch

La variation d’énergie interne de chaque bloc est donnée par

Ty
AU, = 2N,R / dT = 3N,R(Ty —T}). (6)
T;
Ainsi, on obtient la température finale du systéme:

_ NTy + NoTy

T, = 7
! N1+ N, Q

ii) Calculer la variation d’entropie AS du systéme de deux blocs lors du processus qui 'améne a
I’équilibre thermique.

Solution: La variation d’entropie AS du systéme est exprimée comme

AS = AS; + AS,. (8)

La variation infinitésimale d’entropie de chaque bloc s’écrit

du; dT;
a8 = St = 3NiR, (9)

ce qui implique que la variation d’entropie de chaque bloc au cours du processus est de la forme

Trar T
AS; = 3N¢R/ & —3N;Rln (i) (10)
r, T T;
Ainsi, la variation d’entropie lors du processus est donnée par
AS =Y 3N,Rln (ﬁ> (11)
T,

i=1,2 v

II. IMPLEMENTATION NUMERIQUE DU PROBLEME

Ci dessous, le corrigé du code Jupyter Notebook pour des exemples de parameétres. Vous pouvez
évidemment changer ceux-ci pour vous familiariser avec le fonctionnement du code.

[22] : | #R#RHHHHHBBRRRBRBHHBBRRBRBRBRREHBHBRRRRRBRRBHHHH
HEHRAH Thermalisation de deux blocs HHERAH
BURBRBRBRBRBRRARGRBRBRBRBRRRRARBRBRBRBRBRRRR IR IR

import numpy as np
import matplotlib.pyplot as plt

RERBRBRABHRARRBRARRRARRBRARRRARRBRRRHRAH
HERBHH NUMERICAL PARAMETERS HH#HH
RARBRRBRARARRRRRRRBRRAAARRRRRRRRARRRHRHHH

THE NUMERICAL PARAMETERS CAN BE CHANGED
TODO: change parameters

size = 100 # size of the 2D grid

dx = 2. / size # space step

T =20 # total time (default 40)
dt = .001 # time step

n = int(T / dt) # number of tterations

RERBBHRREHBRGRRRRGRBRGHRA BB RRR G R AR BB RR R H A
Initialize a container for the profile

at the interface

y = np.arange(start=0, stop=size, step=1)

Initialize a container for the temperature distribution on the grid
= np.zeros((size, size))

U
V = np.zeros((size, size))

TODO: +f desired change wvalues below
for i in range(50):
for j in range(100):
Ulil[j1=10 #T1 value

~~ TODO: CHANGE VALUE of Ul[<,7] for T1 -~
HERBHRRRBRRARBRRRGRRRBRRRRGRRRGRRRRBRRRGRRRRBRRR Y

for i in range(50,100):
for j in range(100):
Uil [j1=1 #T2 wvalue

-~ TODO: CHANGE VALUE of U[<,j] for T2 ~~
RERBHBRABRRARRRRRBRRARRRRRBRRARRRRRBRRRBHRARBHRAS

RERBRBRABHRARRRRRARRRARRRARRBRRBHRABRRRRRHHRAH
DEF OF LAPLACIAN OPERATOR W/ FINITE DIFF
HERBBHBAAHRRRBRRARRRRRGRRRRRRRRBHRR R RR R A

def laplacian(Z):

Ztop = Z[0:-2, 1:-1]

Zleft = Z[1:-1, 0:-2]

Zbottom = Z[2:, 1:-1]

Zright = Z[1:-1, 2:]

Zcenter = Z[1:-1, 1:-1]

return (Ztop + Zleft + Zbottom + Zright -

4 * Zcenter) / dx**2

#Function that displays the temperature on the grid
def show_TEMPERATURE(U, ax=None):
graph = ax.imshow(U, cmap=plt.cm.copper,
interpolation='bilinear',
extent=[-1, 1, -1, 1])
ax.set_axis_off()
fig.colorbar(graph, ax=ax, label = 'T [a.u]')

#Function that displays the temperature profile
def show_profile(U, ax=None):
graph = ax.plot(y,U[:,int(size//2)], color='blue')

FIGURE TO RECEIVE TEMP PROFILE
fig, axes = plt.subplots(3, 3, figsize=(8, 8))
fig.suptitle("Temperature profile at different times" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

FIGURE TO RECEIVE TEMP DISTRIBUTION
fig, axes2 = plt.subplots(3, 3, figsize=(8, 8))
plt.xlabel('X', fontsize=20, fontweight='bold')
plt.ylabel('T', fontsize=20, fontweight='bold')

fig.suptitle("Temperature at the interface between the two cubes" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

FIG FOR TEMP_PROFILE CUMUL

fig, axes3 = plt.subplots(l,1, figsize=(7, 7))
fig.suptitle("Superposition of temperature profiles" , fontsize = 17)
plt.xlabel('X', fontsize=20, fontweight='bold')

plt.ylabel('T', fontsize=20, fontweight='bold')

FIG FOR TEMP_PROFILE CURSOR
#fig, aves = plt.subplots(1,1, figsize=(8, 8))

step_plot = n // 9

HARBHAARRIAARRIHRARREHARRRAARR BB RSB RIS R A SRS
We solve the PDE with finite differences
HERHHARRRRRARRIHRARRIAARRRAARRRAARBRHAAARRRAARRRAARS
for i in range(n):

We compute the Laplactan of u and wv.

deltalU = laplacian(U)

We take the wvalues of u and v instide the grid.
Uc = U[1:-1, 1:-1]

Ve = V[1:-1, 1:-1]

We update the variables.

Ul1:-1, 1:-1]=\

Uc + dt * (a * deltaU)

Neumann conditions: derivatives at the edges
(ZERO GRADIENT AT THE BOUNDARY)

are null.
for Z in (U, V):
zZ[o, :1 = Z[1, :]
z[-1, :1 = Z[-2, :]
zZ[:, 0] = Z[:, 1]
z[:, -1]1 = Z[:, -2]

We plot the state of the system at
9 different times.
if i 7 step_plot ==
ax = axes.flat[i // step_plot]
ax2 = axes2.flat[i // step_plot]
ax3 = axes3
show_profile (U, ax=ax)
ax.set_title(f'$t={i * dt:.2f}$"')
show_TEMPERATURE (U, ax=ax2)
ax2.set_title(f'$t={1i * dt:.2f}$")
show_profile(U,ax=ax3)

plt.show()

0 and i < 9 * step_plot:

Temperature profile at different times

t=000 t=222
10 10
B B
6 6
4 4
2 2
0 50 100 0 50 100
t=667 t=889
81 B
6 6 1
4 2 |
2 4
0 50 100 0 50 100
t=13.33 t=15.55
7 7
3 61
5 g4
4]
0 50 100 0 50 100

Wbl o @
P R S

t=4.44

0 50 100
t=1111

0 50 100
t=17.78

0 50 100

Temperature at the interface between the two cubes

t=0.00

=667

t=13.33

10

]

Tla.u]

4

m

Tla.u]

2

-

Tl[au]

t=2.22

t=28.89

t=15.55

=]

Tla.u]

Tla.u]

o

Tlau]

t=4.44

t=11.11

t=17.78

[3]:

RERBRBRARRBARRBRARRRARRBRAARRARRRRRRRRAH
HEAT DIFFUSION ON A 2D SQUARE DOMAIN
HERBBRBRERBRRRRRRERRR BB RRRGRRR R RR R RR Y

#Defines the parameters of the simulation#
HERRRBBRRBRRRRRRRRR BB BRRRBRRR R AR Y

#ERHRAAAR St12ze of the 2D grid #A###A#A#A#HH

lect_size = input("Please enter an (even) integer - Size of the 2D grid (default:,
—100) :\n")

size = int(lect_size)

dx = 2. / size # space step

#Initialize a container for heat distridbution
U = np.zeros((size, size))
V = np.zeros((size, size))

#Initialize the temperature of the heat source
temp = input("Give the temperature of the heat source (in arbitrary units - default:
— 10):\n")

#ERHRRAAE stmulation time HARHHAARHHH

lect_time = input("Simulation time (recommended of about 20 to 40):\n")

T = float(lect_time) # total time

dt = .001 # time step small enough to ensure stability of the numerical scheme
n = int(T / dt) # number of tterations

X = np.arange(start=0, stop=size, step=1)

#uRpRRRARAE Initial heat distribution - square source HHARHHHHAZAHHH

lect = input("Please enter an integer - half range of the heat source (the more,
—narrow, the more the initial distribution looks like a delta function): \n")

value = int(lect)

print (f'Width of the heat source: {2*value} meshpoints')

length = float(size)
for i in range (int(length/2)-value,int(length/2)+value):
for j in range (int(length/2)-value,int(length/2)+value):
U[i] [j1=temp

##RnpHRp A AR Diffusion coefficient a #A#HAHHARHARHAARHALS

lect_a = input("Diffusion coefficient - order of 10-4 to 10-6 recommended (default,
—3e-4):\n") # diffusion coefficient

a = float(lect_a)

#a = 2.8e-4 # diffusion coefficient

RERBBRBRGHRRRBRRARRRRRGRRRB R BB BRRR R RR RS
DEF OF LAPLACIAN OPERATOR W/ FINITE DIFF
RERRRBRARRRARRBRARRRARRRRRRBRRBRRARRBHRRRRAH

def laplacian(Z):
Ztop = Z[0:-2, 1:-1]
Zleft = Z[1:-1, 0:-2]
Zbottom = Z[2:, 1:-1]
Zright = Z[1:-1, 2:]

Zcenter = Z[1:-1, 1:-1]
return (Ztop + Zleft + Zbottom + Zright -
4 % Zcenter) / dxx*2

#Function that displays the temperature on the grid
def show_temperature(U, ax=None):
graph = ax.imshow(U, cmap=plt.cm.copper,
interpolation='bilinear',
extent=[-1, 1, -1, 1])
ax.set_axis_off()
fig.colorbar(graph, ax=ax)
#fig.colorbar(graph, az=az, orientation='horizontal')

def show_profile(U, ax=None):
graph = ax.plot(x,U[:,int(size//2)], color='blue')

step_plot = n // 9

FIGURE TO RECEIVE TEMP PROFILE
fig, axes = plt.subplots(3, 3, figsize=(8, 8))
fig.suptitle("Temperature profile at different times" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

FIGURE TO RECEIVE TEMP DISTRIBUTION
fig, axes2 = plt.subplots(3, 3, figsize=(8, 8))
fig.suptitle("Temperature distribution" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

FIG FOR TEMP_PROFILE CUMUL

fig, axes3 = plt.subplots(l,1, figsize=(8, 8))
fig.suptitle("Superposition of temperature profiles" , fontsize = 17)
plt.xlabel('X', fontsize=20, fontweight='bold')

plt.ylabel('T', fontsize=20, fontweight='bold')

step_plot = n // 9

RARHRARRRRARRRBRARRIRARRIRARRRRARRRRARRRRARRRRAARS
We solve the PDE with finite differences
HERBHRARBBRARBRBHRRRRBARBRBHRARRRRARBRHRARBRRARRRRHA RS

for i in range(n):
We compute the Laplacian of u.

deltaU = laplacian(U)

We take the wvalues of u inside the grid.
Uc = U[1:-1, 1:-1]

We update the wvariables.

Ul1:-1, 1:-1] = Uc + dt * (a * deltal)

Neumann conditions: derivatives at the edges
are null (values at the boundary are set constant)
for Z in (U,V):

zlo, :1 = zl1, :1

z[-1, :1 = Z[-2, :]

zZ[:, 0] = Z[:, 1]

z[:, -1]1 = Z[:, -2]

We plot the state of the system at

9 different times.

if i 7 step_plot == 0 and i < 9 * step_plot:
ax = axes.flat[i // step_plot]
ax2 = axes2.flat[i // step_plot]
ax3 = axes3
show_profile (U, ax=ax)
ax.set_title(f'$t={i * dt:.2f}$")
show_temperature (U, ax=ax2)
ax2.set_title(f'$t={i * dt:.2f}$"')
show_profile(U,ax=ax3)

plt.show()

Please enter an (even) integer - Size of the 2D grid (default: 100):
90
Give the temperature of the heat source (in arbitrary units - default: 10):
11
Simulation time (recommended of about 20 to 40):
30
Please enter an integer - half range of the heat source (the more narrow, the
more the initial distribution looks like a delta function):
1
Width of the heat source: 2 meshpoints
Diffusion coefficient - order of 10-4 to 10-6 recommended (default 3e-4):
le-4

15

10

05

0o

08

06

04

0.z

00

Temperature profile at different times

t=000 t=333 t=6.67
4
20
3
15
2 10
1 0.5
- - - - o - - - - 0o - - - -
0 25 50 5 0 25 50 75 0 25 50 FE)
t=10.00 t=13.33 t=16.66
125 10
100 08
075 06
050 04
025 0z
T T T T [:I'GI:I T T T T [:IG T T T T
0 25 50 75 0 25 50 75 0 25 50 =
t=20.00 t=23.33 t=26.66
06
0.6
0.4 oe
02 0.2
T T T T DO T T T T [:IO T T T T
25 50 75 25 50 75 25 50 75
Temperature distribution
t=0.00 t=333 4 t=6.67
20
15
10
05
0 0 00
t=10.00 15 r=13.33 t=16.66
0.5
06
04
02
00
t=20.00 08 t=2333 t=26.66 06
04
02

10

	Themodynamique Corrigé Série Supplémentaire 2: Equation de la chaleur
	Exercice 1: Thermalisation de deux blocs en contact thermique
	Questions analytiques

	Implémentation numérique du problème

