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EXERCICE 1: THERMALISATION DE DEUX BLOCS EN CONTACT THERMIQUE

A. Questions analytiques

1. En régime stationnaire, montrer que les puissances thermiques exercées par I’environnement sur le

*

premier bloc, par le premier bloc sur le deuxiéme, et par le deuxiéme bloc sur I’environnement sont
égales et écrites comme,

01 12 20
Py =PYY = P3P = PS5V (1)

Solution: En régime stationnaire, ’entropie de chaque bloc est constante,

S;=0 i=1,2. (2)

Les blocs sont des systémes simples. Par conséquent, le taux de production d’entropie de chaque
bloc est nul. Dans ce cas, la variation d’entropie de chaque sous-systéme est donnée par
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Par conséquent
Py = Pgl) _ Cglz) _ Cgzo) (4)

. Considérez maintenant que les deux blocs sont constitués de N7 et No moles de métal respective-

ment. Ils sont initialement séparés et a températures T et T5. Lorsqu’ils sont mis en contact, ils
atteignent progressivement 1’équilibre thermique.

i) Déterminer la température finale Ty du systéme de deux blocs & 1’équilibre thermique.

Solution: Etant donné que le systéme est isolé, I’énergie interne est constante. Par conséquent,
la variation d’énergie interne AU du systéme est nulle,

AU = AU, + AU, = 0. (5)
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La variation d’énergie interne de chaque bloc est donnée par

Ty
AU, = 2N,R / dT = 3N,R(Ty —T}). (6)
T;
Ainsi, on obtient la température finale du systéme:

_ NTy + NoTy

T, = 7
! N1+ N, Q

ii) Calculer la variation d’entropie AS du systéme de deux blocs lors du processus qui 'améne a
I’équilibre thermique.

Solution: La variation d’entropie AS du systéme est exprimée comme

AS = AS; + AS,. (8)

La variation infinitésimale d’entropie de chaque bloc s’écrit

du; dT;
a8 = St = 3NiR, (9)

ce qui implique que la variation d’entropie de chaque bloc au cours du processus est de la forme

Trar T
AS; = 3N¢R/ & —3N;Rln (i) (10)
r, T T;
Ainsi, la variation d’entropie lors du processus est donnée par
AS =Y 3N,Rln (ﬁ> (11)
T,

i=1,2 v

II. IMPLEMENTATION NUMERIQUE DU PROBLEME

Ci dessous, le corrigé du code Jupyter Notebook pour des exemples de parameétres. Vous pouvez
évidemment changer ceux-ci pour vous familiariser avec le fonctionnement du code.
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HEHRAH Thermalisation de deux blocs HHERAH
BURBRBRBRBRBRRARGRBRBRBRBRRRRARBRBRBRBRBRRRR IR IR

import numpy as np
import matplotlib.pyplot as plt

RERBRBRABHRARRBRARRRARRBRARRRARRBRRRHRAH
HERBHH NUMERICAL PARAMETERS HH#HH
RARBRRBRARARRRRRRRBRRAAARRRRRRRRARRRHRHHH

# THE NUMERICAL PARAMETERS CAN BE CHANGED
# TODO: change parameters

size = 100 # size of the 2D grid

dx = 2. / size # space step

T =20 # total time (default 40)
dt = .001 # time step

n = int(T / dt) # number of tterations

RERBBHRREHBRGRRRRGRBRGHRA BB RRR G R AR BB RR R H A
# Initialize a container for the profile

# at the interface

y = np.arange(start=0, stop=size, step=1)

# Initialize a container for the temperature distribution on the grid
= np.zeros((size, size))

U
V = np.zeros((size, size))

# TODO: +f desired change wvalues below
for i in range(50):
for j in range(100):
Ulil[j1=10 #T1 value

### ~~ TODO: CHANGE VALUE of Ul[<,7] for T1 -~ ###
HERBHRRRBRRARBRRRGRRRBRRRRGRRRGRRRRBRRRGRRRRBRRR Y

for i in range(50,100):
for j in range(100):
Uil [j1=1 #T2 wvalue

### -~ TODO: CHANGE VALUE of U[<,j] for T2 ~~ ###
RERBHBRABRRARRRRRBRRARRRRRBRRARRRRRBRRRBHRARBHRAS

RERBRBRABHRARRRRRARRRARRRARRBRRBHRABRRRRRHHRAH
# DEF OF LAPLACIAN OPERATOR W/ FINITE DIFF #
HERBBHBAAHRRRBRRARRRRRGRRRRRRRRBHRR R RR R A

def laplacian(Z):

Ztop = Z[0:-2, 1:-1]

Zleft = Z[1:-1, 0:-2]

Zbottom = Z[2:, 1:-1]

Zright = Z[1:-1, 2:]

Zcenter = Z[1:-1, 1:-1]

return (Ztop + Zleft + Zbottom + Zright -

4 * Zcenter) / dx**2



#Function that displays the temperature on the grid
def show_TEMPERATURE(U, ax=None):
graph = ax.imshow(U, cmap=plt.cm.copper,
interpolation='bilinear',
extent=[-1, 1, -1, 1])
ax.set_axis_off()
fig.colorbar(graph, ax=ax, label = 'T [a.u]')

#Function that displays the temperature profile
def show_profile(U, ax=None):
graph = ax.plot(y,U[:,int(size//2)], color='blue')

###### FIGURE TO RECEIVE TEMP PROFILE #######
fig, axes = plt.subplots(3, 3, figsize=(8, 8))
fig.suptitle("Temperature profile at different times" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

#### FIGURE TO RECEIVE TEMP DISTRIBUTION #####
fig, axes2 = plt.subplots(3, 3, figsize=(8, 8))
plt.xlabel('X', fontsize=20, fontweight='bold')
plt.ylabel('T', fontsize=20, fontweight='bold')

fig.suptitle("Temperature at the interface between the two cubes" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

##### FIG FOR TEMP_PROFILE CUMUL ######

fig, axes3 = plt.subplots(l,1, figsize=(7, 7))
fig.suptitle("Superposition of temperature profiles" , fontsize = 17)
plt.xlabel('X', fontsize=20, fontweight='bold')

plt.ylabel('T', fontsize=20, fontweight='bold')

##### FIG FOR TEMP_PROFILE CURSOR ######
#fig, aves = plt.subplots(1,1, figsize=(8, 8))

step_plot = n // 9

HARBHAARRIAARRIHRARREHARRRAARR BB RSB RIS R A SRS
# We solve the PDE with finite differences #
HERHHARRRRRARRIHRARRIAARRRAARRRAARBRHAAARRRAARRRAARS
for i in range(n):

# We compute the Laplactan of u and wv.

deltalU = laplacian(U)

# We take the wvalues of u and v instide the grid.
Uc = U[1:-1, 1:-1]

Ve = V[1:-1, 1:-1]

# We update the variables.

Ul1:-1, 1:-1]=\



Uc + dt * (a * deltaU )

# Neumann conditions: derivatives at the edges
(ZERO GRADIENT AT THE BOUNDARY)

# are null.
for Z in (U, V):
zZ[o, :1 = Z[1, :]
z[-1, :1 = Z[-2, :]
zZ[:, 0] = Z[:, 1]
z[:, -1]1 = Z[:, -2]

# We plot the state of the system at
# 9 different times.
if i 7 step_plot ==
ax = axes.flat[i // step_plot]
ax2 = axes2.flat[i // step_plot]
ax3 = axes3
show_profile (U, ax=ax)
ax.set_title(f'$t={i * dt:.2f}$"')
show_TEMPERATURE (U, ax=ax2)
ax2.set_title(f'$t={1i * dt:.2f}$")
show_profile(U,ax=ax3)

plt.show()

0 and i < 9 * step_plot:
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[3]:

RERBRBRARRBARRBRARRRARRBRAARRARRRRRRRRAH
# HEAT DIFFUSION ON A 2D SQUARE DOMAIN #
HERBBRBRERBRRRRRRERRR BB RRRGRRR R RR R RR Y

#Defines the parameters of the simulation#
HERRRBBRRBRRRRRRRRR BB BRRRBRRR R AR Y

#ERHRAAAR St12ze of the 2D grid #A###A#A#A#HH

lect_size = input("Please enter an (even) integer - Size of the 2D grid (default:,
—100) :\n")

size = int(lect_size)

dx = 2. / size # space step

#Initialize a container for heat distridbution
U = np.zeros((size, size))
V = np.zeros((size, size))

#Initialize the temperature of the heat source
temp = input("Give the temperature of the heat source (in arbitrary units - default:
— 10):\n")

#ERHRRAAE stmulation time HARHHAARHHH

lect_time = input("Simulation time (recommended of about 20 to 40):\n")

T = float(lect_time) # total time

dt = .001 # time step small enough to ensure stability of the numerical scheme
n = int(T / dt) # number of tterations

X = np.arange(start=0, stop=size, step=1)

#uRpRRRARAE Initial heat distribution - square source HHARHHHHAZAHHH

lect = input("Please enter an integer - half range of the heat source (the more,
—narrow, the more the initial distribution looks like a delta function): \n")

value = int(lect)

print (f'Width of the heat source: {2*value} meshpoints')

length = float(size)
for i in range (int(length/2)-value,int(length/2)+value):
for j in range (int(length/2)-value,int(length/2)+value):
U[i] [j1=temp

##RnpHRp A AR Diffusion coefficient a #A#HAHHARHARHAARHALS

lect_a = input("Diffusion coefficient - order of 10-4 to 10-6 recommended (default,
—3e-4):\n") # diffusion coefficient

a = float(lect_a)

#a = 2.8e-4 # diffusion coefficient

RERBBRBRGHRRRBRRARRRRRGRRRB R BB BRRR R RR RS
# DEF OF LAPLACIAN OPERATOR W/ FINITE DIFF #
RERRRBRARRRARRBRARRRARRRRRRBRRBRRARRBHRRRRAH

def laplacian(Z):
Ztop = Z[0:-2, 1:-1]
Zleft = Z[1:-1, 0:-2]
Zbottom = Z[2:, 1:-1]
Zright = Z[1:-1, 2:]



Zcenter = Z[1:-1, 1:-1]
return (Ztop + Zleft + Zbottom + Zright -
4 % Zcenter) / dxx*2

#Function that displays the temperature on the grid
def show_temperature(U, ax=None):
graph = ax.imshow(U, cmap=plt.cm.copper,
interpolation='bilinear',
extent=[-1, 1, -1, 1])
ax.set_axis_off()
fig.colorbar(graph, ax=ax)
#fig.colorbar(graph, az=az, orientation='horizontal')

def show_profile(U, ax=None):
graph = ax.plot(x,U[:,int(size//2)], color='blue')

step_plot = n // 9

###### FIGURE TO RECEIVE TEMP PROFILE #######
fig, axes = plt.subplots(3, 3, figsize=(8, 8))
fig.suptitle("Temperature profile at different times" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

#### FIGURE TO RECEIVE TEMP DISTRIBUTION #####
fig, axes2 = plt.subplots(3, 3, figsize=(8, 8))
fig.suptitle("Temperature distribution" , fontsize = 17)
plt.subplots_adjust(left=0.1,

bottom=0.1,

right=0.9,

top=0.9,

wspace=0.4,

hspace=0.4)

##### FIG FOR TEMP_PROFILE CUMUL ######

fig, axes3 = plt.subplots(l,1, figsize=(8, 8))
fig.suptitle("Superposition of temperature profiles" , fontsize = 17)
plt.xlabel('X', fontsize=20, fontweight='bold')

plt.ylabel('T', fontsize=20, fontweight='bold')

step_plot = n // 9

RARHRARRRRARRRBRARRIRARRIRARRRRARRRRARRRRARRRRAARS
# We solve the PDE with finite differences #
HERBHRARBBRARBRBHRRRRBARBRBHRARRRRARBRHRARBRRARRRRHA RS

for i in range(n):
# We compute the Laplacian of u.

deltaU = laplacian(U)

# We take the wvalues of u inside the grid.
Uc = U[1:-1, 1:-1]

# We update the wvariables.



Ul1:-1, 1:-1] = Uc + dt * (a * deltal)

# Neumann conditions: derivatives at the edges
# are null (values at the boundary are set constant)
for Z in (U,V):

zlo, :1 = zl1, :1

z[-1, :1 = Z[-2, :]

zZ[:, 0] = Z[:, 1]

z[:, -1]1 = Z[:, -2]

# We plot the state of the system at

# 9 different times.

if i 7 step_plot == 0 and i < 9 * step_plot:
ax = axes.flat[i // step_plot]
ax2 = axes2.flat[i // step_plot]
ax3 = axes3
show_profile (U, ax=ax)
ax.set_title(f'$t={i * dt:.2f}$")
show_temperature (U, ax=ax2)
ax2.set_title(f'$t={i * dt:.2f}$"')
show_profile(U,ax=ax3)

plt.show()

Please enter an (even) integer - Size of the 2D grid (default: 100):
90
Give the temperature of the heat source (in arbitrary units - default: 10):
11
Simulation time (recommended of about 20 to 40):
30
Please enter an integer - half range of the heat source (the more narrow, the
more the initial distribution looks like a delta function):
1
Width of the heat source: 2 meshpoints
Diffusion coefficient - order of 10-4 to 10-6 recommended (default 3e-4):
le-4
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