
Themodynamique
Corrigé Série Supplémentaire 3:

Patterns de Turing

S. Guinchard∗
Section de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse

(Supervised by Prof. J.P. Ansermet)†
(Dated: May 25, 2022)

I. EXERCICE 1: PATTERNS DE TURING DANS LE CAS DE DEUX MODÈLES DE
RÉACTION-DIFFUSION

A. Implémentation du problème

[1]: ##############################
Written by S.Guinchard on
05/25/22
##############################
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline

######################################
PARAMETERS FITZHUGH-NAGUMO
######################################

a = 2.8e-4
b = 5e-3
tau = .1
k = -.005

######################################
PARAMETERS DIFFUSION REACTION
######################################

CU = 5.0e-3
DU = .1
CV = 2.8e-4
DV = .1

######################################

size = 100 # size of the 2D grid
dx = 2. / size # space step
T = 9.0 # total time
dt = .001 # time step
n = int(T / dt) # number of iterations

U = np.random.rand(size, size)
V = np.random.rand(size, size)

def laplacian(Z):
Ztop = Z[0:-2, 1:-1]

∗ salomon.guinchard@epfl.ch
† Laboratoire de Physique des Matériaux Nanostructurés, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse

mailto:salomon.guinchard@epfl.ch

2

Zleft = Z[1:-1, 0:-2]
Zbottom = Z[2:, 1:-1]
Zright = Z[1:-1, 2:]
Zcenter = Z[1:-1, 1:-1]
return (Ztop + Zleft + Zbottom + Zright -

4 * Zcenter) / dx**2

def show_patterns(U, ax=None):
ax.imshow(U, cmap=plt.cm.copper,

interpolation='bilinear',
extent=[-1, 1, -1, 1])

ax.set_axis_off()

fig, axes = plt.subplots(3, 3, figsize=(8, 8))
step_plot = n // 9
We simulate the PDE with the finite difference
method.
for i in range(n):

We compute the Laplacian of u and v.
deltaU = laplacian(U)
deltaV = laplacian(V)
We take the values of u and v inside the grid.
Uc = U[1:-1, 1:-1]
Vc = V[1:-1, 1:-1]
We update the variables.

TODO: COMMENT OR UNCOMMENT TO CHOOSE THE SET OF EQUATIONS YOU WANT

1ST SET : FITZHUGH_NAGUMO EQUATION
U[1:-1, 1:-1], V[1:-1, 1:-1] = \

Uc + dt * (a * deltaU + Uc - Uc**3 - Vc + k),\
Vc + dt * (b * deltaV + Uc - Vc) / tau

2ND SET: REACTION DIFFUSION MODEL
#U[1:-1, 1:-1], V[1:-1, 1:-1] = \
Uc + dt * ((CU * Uc*Uc) / Vc - Uc + DU * deltaU),\
Vc + dt * (CV * Uc*Uc - Vc + DV * deltaV)

Neumann conditions: derivatives at the edges
are null.
for Z in (U, V):

Z[0, :] = Z[1, :]
Z[-1, :] = Z[-2, :]
Z[:, 0] = Z[:, 1]
Z[:, -1] = Z[:, -2]

We plot the state of the system at
9 different times.
if i % step_plot == 0 and i < 9 * step_plot:

ax = axes.flat[i // step_plot]
show_patterns(U, ax=ax)
ax.set_title(f'$t={i * dt:.2f}$')

fig, ax = plt.subplots(1, 1, figsize=(8, 8))
show_patterns(U, ax=ax)
plt.show

[1]: <function matplotlib.pyplot.show(close=None, block=None)>

3

FIG. 1. Grid with the two substances interacting for 9 different times (Fitzhugh - Nagumo)

FIG. 2. Final distribution of the two substances on the 2D grid: leopard motive from Fitzhugh - Nagumo

4

FIG. 3. Grid with the two substances interacting for 9 different times (Reaction - Diffusion model)

FIG. 4. Final distribution of the two substances on the 2D grid: checkerboard (Reaction - Diffusion model)

	Themodynamique Corrigé Série Supplémentaire 3: Patterns de Turing
	Exercice 1: Patterns de Turing dans le cas de deux modèles de réaction-diffusion
	Implémentation du problème

