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I. EXERCICE 1: DEPHASAGE THERMIQUE ENTRE DEUX ISOLANTS

A. Questions analytiques

1. Pour une puissance thermique Pg quelconque, déterminer le systéme d’équations différentielles

couplées qui décrit I’évolution des températures T; ¢ = 1,2 des deux sous-systémes.

Solution: En appliquant le premier principe aux deux sous-systémes en ’absence d’action mé-
canique, Py = 0, compte tenu du fait que le transfert de chaleur vers le sous systéme 1 est décrit
par la somme de la puissance thermique Py exercée par I’environnement et la puissance thermique

exercée par le sous systéme 2 Pgl), et que le transfert de chaleur vers le sous systéme 2 est décrit

12 e ) .o . .
par Pé2 ), on a que les dérivées temporelles des énergies internes des deux sous-systémes s’écrivent:

Uy =CT) = Pgl) + Pg,

. . (1)
Uz = CoTy = PJ?.

Compte tenu de la loi de Fourier discréte, les puissances thermiques décrivant le transfert de chaleur
a travers la paroi diatherme de surface A, d’épaisseur [ et de conductivité thermique x entre les
deux sous systémes s’écrivent:

A
Py? = PG = —x = (Th ~ Th) (2)

Par conséquent, le systéme d’équations différentielles couplées décrivant I’évolution de température
s’écrit

m=fe, fAn o

C, Oyl -
Ty = — A, )
SO R '

. Dans le cas particulier ou il n’y a pas de transfert de chaleur avec l'environnement (Pg = 0),

déterminer explicitement I’évolution temporelle de la différence de température T (t) — T (¢).

Solution: En absence de transfert de chaleur périodique avec I’environnement, Py = 0, la dif-
férence entre les deux équations d’évolution des températures Eq.(3) s’écrit,
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o 1 1\A4
Ty —T) = —/@(C—l v @)T(TQ —T). (4)

En multipliant Eq.(4) par dt et en la divisant par T — T}, on obtient

a1, - 1)

——— —ﬁ(i + i) A, (5)

c, Cy/ 1

qui est une équation logarithmique. En définissant le temps d’amortissement 7 comme

r=alata) —aleis) ©)

et en intégrant sur la période ' € [0, t], on obtient:

To(H)~Ti (t) d(Tg(t’) -7 (t’)) Lt
/ : O / . (1)
-1 0) 12(t) —Ti(t) T Jo

En prenant ’exponentielle du résultat précédent, on obtient le résultat désiré:

t
To(t) = 11 () = (T2(0) — 73(0) ) exp (- ). (8)
Ainsi, en 'absence de transfert de chaleur avec I’environnement, la différence de température entre
les deux sous-systémes décroit exponentiellement. Les deux sous systémes se thermalisent.
. Toujours dans le cas sans transfert de chaleur (Pp = 0), déterminer le taux de production

d’entropie Ilg.

Solution: Compte tenu de la relation de Gibbs, et de I’équation d’évolution appliquée a chaque sous
systéme fermé, de volume constant, en absence d’action mécanique Py = 0, la dérivée temporelle
de ’entropie de chaque sous-systéme s’écrit,

v, PYY ATy - T

S, = L= —_ ,

T T I T ©
- (12)

S _@_PQ __KéTQ_Tl

T, T T

En tenant compte du deuxiéme principe pour un systéme adiabatiquement fermé et de I'extensivité
de ’entropie, le taux de production d’entropie est donné par

. . A/l 1 A(TQ —T1)2
= =KR—|—— — — — N e .——— |}
Mg = $1+ S5 = (Tl TQ)(T2 ) = r7 T2 0 (10)

. Dans le régime harmonique di & un transfert de chaleur périodique avec l’ensemble de
I'environnement, en écrivant le systéme d’équations d’évolution couplées sous forme matricielle,
en déduire le module du rapport des amplitudes complexes des oscillations de températures:
|AT5/AT)| et 'angle de déphasage A¢ = ¢2 — ¢1 entre ces amplitudes complexes AT;.



Solution: Comme les températures complexes des deux sous-systémes s’écrivent

T;(t) = ATjexp (iwt) + Ty j=1,2,

leurs dérivées temporelles sont données par

Tj(t) = iwATjexp (iwt) j=1,2.

Pour une puissance thermique périodique (et complexe),

Py(t) = Pyexpliwt),

le systéme d’équations Eq.(8) devient

P, A
iwATy exp (iwt) = =2 exp (iwt) + if(ATQ — ATy) exp (iwt),

Ch Cyl
. . Kk A )
iwATy exp (iwt) = a7 (AT, — ATh) exp (iwt).
2
Le systéme peut ainsi se réécrire
Kk A Kk A PQ
] — = ATy — ——ATy, =—
(i 7 )AT - & AT =5
k A Kk A
———AT; ' — — | AT, =0.
Cy 1 1+Gw+@1) 2

En mettant le résultat précédent en forme matricielle on obtient

K A
W+ A
ATl = s | P07
—w? + iwk s (c% + C%)
AT, = Ca Py.

A

l
VR . o B U i
w +ZW”1<C +02>

La rapport des deux amplitudes vaut

Pour le module du rapport, on obtient

(18)



[2]:

m

2 A2
ATl‘ix/ 77 /| LW (20)
2A2

AT, =

ﬂb

Ainsi, Pamplitude des oscillations de température est plus forte dans le sous systéme 1 que dans
le sous systéme 2. Cela signifie que l'isolation amortit les fluctuations de température a 'intérieur
du batiment, comme on le comprend intuitivement. Le rapport des amplitudes complexes s’écrit
en terme des angles de déphasage de ces oscillations dans le plan complexe, comme,

I 2]2
eild1—02) _ \/T m<COS(A¢) +1 Sin(A¢)>-

(21)

En prenant le rapport des parties réelles et imaginaires de ’équation précédente, on obtient pour
la tangente de ’angle de déphasage:

ATl - |AT1| €i¢ ATl
ATQ o |AT2| €i¢2 ATQ

sin(A¢)  wl
tan (A¢g) = ——= = —Cb. 22
an (A9) cos(Ag) kKA % (22)
De 14, on déduit une expression pour ’angle
wl
Aé = arctan (K—Acz). (23)

B. Implémentation numérique

. Implémentez numériquement le résultat de la question 2 et plotter AT(t). Pour cela, com-

plétez le code du Jupyter Notebook associé. Les lignes de code a compléter sont indiquées par
les TODO zones. Changez les paramétres physiques, temps caractéristique... Que remarquez vous ?

Solution:

t = np.linspace(0, 10, 10000);

# TODO: Set arbitrary initial conditions
# Temperatures

T10 = 0;

T20 = 1;

# problem constants

tau=1;

# TODO: Implement and plot Delta T
DeltaT=(T20-T10)*np.exp(-t/tau) ;
plt.plot(t, DeltaT );
plt.xlabel('$t$ [a.ul');
plt.ylabel('$\Delta T$ [K]');
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a. Résolution numérique de I’évolution des températures Ty et T,
[3]: from array import *

# Paramétres physiques

# TODO: Play with parameters

T1=10;

T2=20;

kappa =

A =

Cc1 =
c2 =
1 =

[y
.o

o we

>

=R e
o

3

# Paramétres numériques
tfin = b;

nsteps = 10000;
dt=tfin/nsteps;

# Initialisation variables temps et température
output = np.zeros((2,nsteps));
arrayT = [T1,T2];
time = np.zeros((l,nsteps));
time[0] [0] = 0.0;
for i in range(1l,nsteps):
time [0] [i] = time[0] [i-1]+dt;

# Method running Euler method till final time
def run():
£=0.0;
for i in range(O, nsteps):
output [0] [i] = arrayT[0];
output [1] [i] = arrayT[1];

arrayT[0]= arrayT[0] - kappa*A/(C2*1)*(arrayT[1]-arrayT[0])*dt;



2. Dans le cas d’un transfert de chaleur périodique comme dans la question 4, plottez les températures
Ty et Ty résolues numériquement par le code de la cellule.
Changez les paramétres physiques des sous systémes 1 et 2, de méme que le
temps de simulation ty;, € [10,50]. Distinguez le régime transitoire du régime harmonique. Que

[4]:

arrayT[1]= arrayT[1] + kappa*A/(C1#1)*(arrayT[1]-arrayT[0])*dt;
t+=dt;

run() ;
# TODO : Plot T1, T2 and T2-T1 = Delta T

plt
plt
plt
plt
plt

températures.

.plot(time[0], output[0],'b-', label='$T_1$');

.plot(time[0], output[1], 'r-', label='8$T_2§');

.plot(time[0], output[1]-output[0], 'g-', label='$\Delta T$');
.xlabel('$t$ [a.ul');

.ylabel('$\Delta T$ [K]');

plt.

legend(loc="upper right");
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remarquez vous quant & la période des oscillations ?

Solution:

from array import *
HARRARRRRRRRRRRAAAARRRRRRRRRRRHRAAAAAARRRRRRRHHHH
# Paramétres physiques

# TODO: Play with parameters

T1=10;

T2=20;

kappa =

A
C1
Cc2
1
K

]
O Kk B = |
o Do oo ©o [
..

]
[y

we

Plottez également la différence de



# Paramétres numériques
# TODO: Play with tfin
tfin =20;
nsteps=100000;
dt=tfin/nsteps;

######## DO NOT modify anything below ###H###H#H
RERBBHRARBRRRBRRARBRRRBRRARBRRRBRRARHRRRBHRA RIS

# Initialisation variables temps et température
output = np.zeros((2,nsteps));

arrayT = [T1,T2];

time = np.zeros((1,nsteps));

time [0] [0] = 0.0;

for i in range(1l,nsteps):
time [0] [i] = time[0] [i-1]+dt;

PQ = np.zeros((1,nsteps));
for i in range(O,nsteps):
PQ[0] [i] = K*np.cos(np.pi/3*time[0] [i]);

# Method running Euler method till final time
def run():
t=0.0;
for i in range(O, nsteps):
output [0] [1] = arrayT[0];
output[1] [i] = arrayT[1];

arrayT[0]= arrayT[0] - kappaxA/(C2%1)*(arrayT[1]-arrayT[0])*dt +,
—PQ[0] [i]/C1*dt;

arrayT[1]= arrayT[1] + kappa*A/(C1#1)*(arrayT[1]-arrayT[0])*dt;

t+=dt;

run();

# TODO: Plot the temperatures T1 and T2
plt.figure(1)

plt.plot(time[0], PQLO], 'k--')
plt.xlabel('$t$ [a.ul');

plt.ylabel('$P_Q$ [J/s]1');
plt.ticklabel_format(axis='y', style='sci');

plt.figure(2)

plt.plot(time[0], output[0],'b-', label= '$T_1$');
plt.plot(time[0], output[1], 'r-', label='$T_2$');
plt.plot(time[0], output[1]-output[0], 'g-', label='$\Delta T$');
plt.xlabel('$t$ [a.ul');

plt.ylabel('[K]');

plt.legend(loc="upper right");
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Remarque: Noter que les oscillations de Ty se font effectivement avec la méme période que
Ty (et Pg), mais & moindre amplitude, ce qui confirme le résultat analytique obtenu précédemment.
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3. Dans le cas du transfert de chaleur périodique, plottez le taux de production d’entropie. Com-
mentez le résultat obtenu.

Solution:
[6]: from array import *

# Paramétres physiques

# TODO: Play with parameters
T1=10;
T2=20;
kappa =
A =
C1

Cc2 =
1 =
K =

ilg

B

o we

>

>

N ===

# initialise \dot(S1) et \dot(S2) a t=0.0

S1 = kappa*A/1x(T2-T1)/T1;
S2 = -kappa*A/1%(T2-T1)/T2;

# Paramétres numériques
tfin =20;
nsteps=100000;
dt=tfin/nsteps;

# Initialisation variables temps et température
outputT = np.zeros((2,nsteps));
outputS = np.zeros((2,nsteps));
arrayT = [T1,T2]; # Stocke les températures T
arrayS = [S1,S2]; # stocke les dérivées de S
PiS = np.zeros((1,nsteps));
time = np.zeros((1,nsteps));
time[0] [0] = 0.0;
for i in range(1l,nsteps):

time[0] [i] = time[0] [i-1]+dt;

PQ = np.zeros((1l,nsteps));
for i in range(O,nsteps):
PQ[0] [i] = K*np.cos(np.pi/3*time[0] [i]);

# Method running Euler method till final time
def run():

t=0.0;

outputT[0] [0] = arrayT[0];

outputT[1] [0] = arrayT[1];

outputS[0] [0] = arrayS[0];
outputS[1][0] = arrayS[i];

for i in range(l, nsteps):
arrayT[0]= arrayT[0] - kappa*A/(C2*1)*(arrayT[1]-arrayT[0])*dt +,
—PQ[0] [i]/C1lxdt;
arrayT[1]= arrayT[1] + kappa*A/(C1*1)*(arrayT[1]-arrayT[0])*dt;

outputT[0] [i] = arrayT[0];
outputT[1] [i] = arrayT[1];



outputS[0] [i] = kappa*A/1l*(arrayT[1]-arrayT[0])/arrayT[0];
outputS[1] [i] -kappa*A/1*(arrayT[1]-arrayT[0])/arrayT[1];

# To get S: integrate \dot(S), that is arrays

#arrayS[0] = arrayS[0] + kappa*d/(1)*(arrayT[1]-arrayT[0])/arrayT[0]*dt
#arrayS[1] = arrayS[1] - kappa*d/(1)*(arrayT[1]-arrayT[0])/arrayT[1]*dt;

PiS[0] [i] = outputS[0][i] + outputS[1][i];
#TODO:Check equality (plot difference eventually)
#kappa*d/1* (arrayT[1]-arrayT[0])**2/ (arrayT[1] *arrayT[0]);

t+=dt;

run();

# TODO : Plot the entropy production rate

plt
plt
plt
plt
plt

plt
plt
plt
plt
plt
plt

.figure(1)

.plot(time[0], outputT[0], 'b-', label='$T_1$');
.plot (time[0], outputT[1], 'r-', label='$T_2$');
.x1label ('$t$ [a.ul');

.ylabel(' [K]');

plt.

legend(loc="upper right");

.figure(2)

.plot(time[0], outputS[0],'b-', label='$\dot{S_1}$');
.plot(time[0], outputS[1], 'r-', label='$\dot{S_2}$');
.plot(time[0], PiS[0], 'g-', label='$\Pi_S$');
.xlabel('$t$ [a.ul');

.ylabel('[ J/K/s 1');

plt.

legend(loc="upper right");
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