
Themodynamique
Corrigé Série Supplémentaire 1:

Déphasage Thermique

S. Guinchard∗
Section de Physique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse

(Supervised by Prof. J.P. Ansermet)†
(Dated: April 6, 2022)

I. EXERCICE 1: DÉPHASAGE THERMIQUE ENTRE DEUX ISOLANTS

A. Questions analytiques

1. Pour une puissance thermique PQ quelconque, déterminer le système d’équations différentielles
couplées qui décrit l’évolution des températures Ti i = 1, 2 des deux sous-systèmes.

Solution: En appliquant le premier principe aux deux sous-systèmes en l’absence d’action mé-
canique, PW = 0, compte tenu du fait que le transfert de chaleur vers le sous système 1 est décrit
par la somme de la puissance thermique PQ exercée par l’environnement et la puissance thermique
exercée par le sous système 2 P (21)

Q , et que le transfert de chaleur vers le sous système 2 est décrit

par P (12)
Q , on a que les dérivées temporelles des énergies internes des deux sous-systèmes s’écrivent:

U̇1 = C1Ṫ1 = P
(21)
Q + PQ,

U̇2 = C2Ṫ2 = P
(12)
Q .

(1)

Compte tenu de la loi de Fourier discrète, les puissances thermiques décrivant le transfert de chaleur
à travers la paroi diatherme de surface A, d’épaisseur l et de conductivité thermique κ entre les
deux sous systèmes s’écrivent:

P
(12)
Q = P

(21)
Q = −κA

l
(T2 − T1) (2)

Par conséquent, le système d’équations différentielles couplées décrivant l’évolution de température
s’écrit

Ṫ1 =
PQ
C1

+
κ

C1

A

l
(T2 − T1),

Ṫ2 = − κ

C2

A

l
(T2 − T1).

(3)

2. Dans le cas particulier où il n’y a pas de transfert de chaleur avec l’environnement (PQ ≡ 0),
déterminer explicitement l’évolution temporelle de la différence de température T2(t)− T1(t).

Solution: En absence de transfert de chaleur périodique avec l’environnement, PQ ≡ 0, la dif-
férence entre les deux équations d’évolution des températures Eq.(3) s’écrit,

∗ salomon.guinchard@epfl.ch
† Laboratoire de Physique des Matériaux Nanostructurés, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse

mailto:salomon.guinchard@epfl.ch


2

Ṫ2 − Ṫ1 = −κ
( 1

C1
+

1

C2

)A
l

(T2 − T1). (4)

En multipliant Eq.(4) par dt et en la divisant par T2 − T1, on obtient

d
(
T2 − T1

)
T2 − T1

= −κ
( 1

C1
+

1

C2

)A
l
dt, (5)

qui est une équation logarithmique. En définissant le temps d’amortissement τ comme

τ =
l

κA

( 1

C1
+

1

C2

)−1

=
l

κA

( C1C2

C1 + C2

)
(6)

et en intégrant sur la période t′ ∈ [0, t], on obtient:

∫ T2(t)−T1(t)

T2(0)−T1(0)

d
(
T2(t′)− T1(t′)

)
T2(t′)− T1(t′)

= −1

τ

∫ t

0

dt′. (7)

En prenant l’exponentielle du résultat précédent, on obtient le résultat désiré:

T2(t)− T1(t) =
(
T2(0)− T1(0)

)
exp

(
− t

τ

)
. (8)

Ainsi, en l’absence de transfert de chaleur avec l’environnement, la différence de température entre
les deux sous-systèmes décroit exponentiellement. Les deux sous systèmes se thermalisent.

3. Toujours dans le cas sans transfert de chaleur (PQ ≡ 0), déterminer le taux de production
d’entropie ΠS .

Solution: Compte tenu de la relation de Gibbs, et de l’équation d’évolution appliquée à chaque sous
système fermé, de volume constant, en absence d’action mécanique PW ≡ 0, la dérivée temporelle
de l’entropie de chaque sous-système s’écrit,

Ṡ1 =
U̇1

T1
=
P

(21)
Q

T1
= κ

A

l

T2 − T1

T1
,

Ṡ2 =
U̇2

T2
=
P

(12)
Q

T2
= −κA

l

T2 − T1

T2

(9)

En tenant compte du deuxième principe pour un système adiabatiquement fermé et de l’extensivité
de l’entropie, le taux de production d’entropie est donné par

ΠS = Ṡ1 + Ṡ2 = κ
A

l

( 1

T1
− 1

T2

)
(T2 − T1) = κ

A

l

(T2 − T1)2

T1T2
≥ 0. (10)

4. Dans le régime harmonique dû à un transfert de chaleur périodique avec l’ensemble de
l’environnement, en écrivant le système d’équations d’évolution couplées sous forme matricielle,
en déduire le module du rapport des amplitudes complexes des oscillations de températures:
|∆T2/∆T | et l’angle de déphasage ∆φ = φ2 − φ1 entre ces amplitudes complexes ∆Ti.
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Solution: Comme les températures complexes des deux sous-systèmes s’écrivent

Tj(t) = ∆Tj exp (iωt) + T0 j = 1, 2, (11)

leurs dérivées temporelles sont données par

Ṫj(t) = iω∆Tj exp (iωt) j = 1, 2. (12)

Pour une puissance thermique périodique (et complexe),

PQ(t) = P0 exp(iωt), (13)

le système d’équations Eq.(8) devient

iω∆T1 exp (iωt) =
P0

C1
exp (iωt) +

κ

C1

A

l
(∆T2 −∆T1) exp (iωt),

iω∆T2 exp (iωt) = − κ

C2

A

l
(∆T2 −∆T1) exp (iωt).

(14)

Le système peut ainsi se réécrire

(
iω +

κ

C1

A

l

)
∆T1 −

κ

C1

A

l
∆T2 =

P0

C1
,

− κ

C2

A

l
∆T1 +

(
iω +

κ

C2

A

l

)
∆T2 =0.

(15)

En mettant le résultat précédent en forme matricielle on obtient

(
iω + κ

C1

A
l − κ

C1

A
l

− κ
C2

A
l iω + κ

C2

A
l

)(
∆T1

∆T2

)
=

(
P0

0

)
, (16)

d’où on tire en inversant la matrice, que

∆T1 =
iω + κ

C2

A
l

−ω2 + iωκAl

(
1
C1

+ 1
C2

)P0, (17)

∆T2 =
κ
C2

A
l

−ω2 + iωκAl

(
1
C1

+ 1
C2

)P0. (18)

La rapport des deux amplitudes vaut

∆T1

∆T2
=
iω + κ

C2

A
l

κ
C2

A
l

. (19)

Pour le module du rapport, on obtient
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∣∣∣∆T1

∆T2

∣∣∣ =

√
ω2 + κ2

C2
2

A2

l2

κ
C2

A
l

=

√
1 +

ω2l2

κ2A2
> 1. (20)

Ainsi, l’amplitude des oscillations de température est plus forte dans le sous système 1 que dans
le sous système 2. Cela signifie que l’isolation amortit les fluctuations de température à l’intérieur
du bâtiment, comme on le comprend intuitivement. Le rapport des amplitudes complexes s’écrit
en terme des angles de déphasage de ces oscillations dans le plan complexe, comme,

∆T1

∆T2
=
|∆T1|
|∆T2|

eiφ1

eiφ2
=
∣∣∣∆T1

∆T2

∣∣∣ei(φ1−φ2) =

√
1 +

ω2l2

κ2A2
ei∆φ =

√
1 +

ω2l2

κ2A2

(
cos(∆φ) + i sin(∆φ)

)
.

(21)

En prenant le rapport des parties réelles et imaginaires de l’équation précédente, on obtient pour
la tangente de l’angle de déphasage:

tan (∆φ) =
sin(∆φ)

cos(∆φ)
=

ωl

κA
C2. (22)

De là, on déduit une expression pour l’angle

∆φ = arctan
( ωl
κA

C2

)
. (23)

B. Implémentation numérique

1. Implémentez numériquement le résultat de la question 2 et plotter ∆T (t). Pour cela, com-
plétez le code du Jupyter Notebook associé. Les lignes de code à compléter sont indiquées par
les TODO zones. Changez les paramètres physiques, temps caractéristique... Que remarquez vous ?

Solution:

[2]: t = np.linspace(0, 10, 10000);

# TODO: Set arbitrary initial conditions
# Temperatures
T10 = 0;
T20 = 1;
# problem constants
tau=1;

# TODO: Implement and plot Delta T
DeltaT=(T20-T10)*np.exp(-t/tau);
plt.plot(t, DeltaT );
plt.xlabel('$t$ [a.u]');
plt.ylabel('$\Delta T$ [K]');
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a. Résolution numérique de l’évolution des températures T1 et T2

[3]: from array import *
# Paramètres physiques
# TODO: Play with parameters
T1=10;
T2=20;
kappa = -1;
A = 1;
C1 = 1;
C2 = 1;
l = 1;

# Paramètres numériques
tfin = 5;
nsteps = 10000;
dt=tfin/nsteps;

# Initialisation variables temps et température
output = np.zeros((2,nsteps));
arrayT = [T1,T2];
time = np.zeros((1,nsteps));
time[0][0] = 0.0;
for i in range(1,nsteps):

time[0][i] = time[0][i-1]+dt;

# Method running Euler method till final time
def run():

t=0.0;
for i in range(0, nsteps):

output[0][i] = arrayT[0];
output[1][i] = arrayT[1];

arrayT[0]= arrayT[0] - kappa*A/(C2*l)*(arrayT[1]-arrayT[0])*dt;
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arrayT[1]= arrayT[1] + kappa*A/(C1*l)*(arrayT[1]-arrayT[0])*dt;
t+=dt;

run();
# TODO : Plot T1, T2 and T2-T1 = Delta T
plt.plot(time[0], output[0],'b-', label='$T_1$');
plt.plot(time[0], output[1], 'r-', label='$T_2$');
plt.plot(time[0], output[1]-output[0], 'g-', label='$\Delta T$');
plt.xlabel('$t$ [a.u]');
plt.ylabel('$\Delta T$ [K]');
plt.legend(loc="upper right");

2. Dans le cas d’un transfert de chaleur périodique comme dans la question 4, plottez les températures
T1 et T2 résolues numériquement par le code de la cellule. Plottez également la différence de
températures. Changez les paramètres physiques des sous systèmes 1 et 2, de même que le
temps de simulation tfin ∈ [10, 50]. Distinguez le régime transitoire du régime harmonique. Que
remarquez vous quant à la période des oscillations ?

Solution:

[4]: from array import *
################################################
# Paramètres physiques
# TODO: Play with parameters
T1=10;
T2=20;
kappa = -1;
A = 1;
C1 = 1;
C2 = 1;
l = 1;
K =10;
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# Paramètres numériques
# TODO: Play with tfin
tfin =20;
nsteps=100000;
dt=tfin/nsteps;

######## DO NOT modify anything below #########
###############################################

# Initialisation variables temps et température
output = np.zeros((2,nsteps));
arrayT = [T1,T2];
time = np.zeros((1,nsteps));
time[0][0] = 0.0;

for i in range(1,nsteps):
time[0][i] = time[0][i-1]+dt;

PQ = np.zeros((1,nsteps));
for i in range(0,nsteps):

PQ[0][i] = K*np.cos(np.pi/3*time[0][i]);

# Method running Euler method till final time
def run():

t=0.0;
for i in range(0, nsteps):

output[0][i] = arrayT[0];
output[1][i] = arrayT[1];

arrayT[0]= arrayT[0] - kappa*A/(C2*l)*(arrayT[1]-arrayT[0])*dt +␣
↪→PQ[0][i]/C1*dt;

arrayT[1]= arrayT[1] + kappa*A/(C1*l)*(arrayT[1]-arrayT[0])*dt;
t+=dt;

run();
# TODO: Plot the temperatures T1 and T2
plt.figure(1)
plt.plot(time[0], PQ[0], 'k--')
plt.xlabel('$t$ [a.u]');
plt.ylabel('$P_Q$ [J/s]');
plt.ticklabel_format(axis='y', style='sci');

plt.figure(2)
plt.plot(time[0], output[0],'b-', label= '$T_1$');
plt.plot(time[0], output[1], 'r-', label='$T_2$');
plt.plot(time[0], output[1]-output[0], 'g-', label='$\Delta T$');
plt.xlabel('$t$ [a.u]');
plt.ylabel('[K]');
plt.legend(loc="upper right");
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Remarque: Noter que les oscillations de T2 se font effectivement avec la même période que
T1 (et PQ), mais à moindre amplitude, ce qui confirme le résultat analytique obtenu précédemment.
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3. Dans le cas du transfert de chaleur périodique, plottez le taux de production d’entropie. Com-
mentez le résultat obtenu.

Solution:

[5]: from array import *

# Paramètres physiques
# TODO: Play with parameters
T1=10;
T2=20;
kappa = -1;
A = 1;
C1 = 1;
C2 = 1;
l = 1;
K = 2;

# initialise \dot(S1) et \dot(S2) à t=0.0

S1 = kappa*A/l*(T2-T1)/T1;
S2 = -kappa*A/l*(T2-T1)/T2;

# Paramètres numériques
tfin =20;
nsteps=100000;
dt=tfin/nsteps;

# Initialisation variables temps et température
outputT = np.zeros((2,nsteps));
outputS = np.zeros((2,nsteps));
arrayT = [T1,T2]; # Stocke les températures T
arrayS = [S1,S2]; # stocke les dérivées de S
PiS = np.zeros((1,nsteps));
time = np.zeros((1,nsteps));
time[0][0] = 0.0;
for i in range(1,nsteps):

time[0][i] = time[0][i-1]+dt;

PQ = np.zeros((1,nsteps));
for i in range(0,nsteps):

PQ[0][i] = K*np.cos(np.pi/3*time[0][i]);

# Method running Euler method till final time
def run():

t=0.0;
outputT[0][0] = arrayT[0];
outputT[1][0] = arrayT[1];

outputS[0][0] = arrayS[0];
outputS[1][0] = arrayS[1];

for i in range(1, nsteps):

arrayT[0]= arrayT[0] - kappa*A/(C2*l)*(arrayT[1]-arrayT[0])*dt +␣
↪→PQ[0][i]/C1*dt;

arrayT[1]= arrayT[1] + kappa*A/(C1*l)*(arrayT[1]-arrayT[0])*dt;

outputT[0][i] = arrayT[0];
outputT[1][i] = arrayT[1];
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outputS[0][i] = kappa*A/l*(arrayT[1]-arrayT[0])/arrayT[0];
outputS[1][i] = -kappa*A/l*(arrayT[1]-arrayT[0])/arrayT[1];

# To get S: integrate \dot(S), that is arrayS
#arrayS[0] = arrayS[0] + kappa*A/(l)*(arrayT[1]-arrayT[0])/arrayT[0]*dt
#arrayS[1] = arrayS[1] - kappa*A/(l)*(arrayT[1]-arrayT[0])/arrayT[1]*dt;

PiS[0][i] = outputS[0][i] + outputS[1][i];
#TODO:Check equality (plot difference eventually)
#kappa*A/l*(arrayT[1]-arrayT[0])**2/(arrayT[1]*arrayT[0]);

t+=dt;

run();

# TODO : Plot the entropy production rate
plt.figure(1)
plt.plot(time[0], outputT[0], 'b-', label='$T_1$');
plt.plot(time[0], outputT[1], 'r-', label='$T_2$');
plt.xlabel('$t$ [a.u]');
plt.ylabel('[K]');
plt.legend(loc="upper right");

plt.figure(2)
plt.plot(time[0], outputS[0],'b-', label='$\dot{S_1}$');
plt.plot(time[0], outputS[1], 'r-', label='$\dot{S_2}$');
plt.plot(time[0], PiS[0], 'g-', label='$\Pi_S$');
plt.xlabel('$t$ [a.u]');
plt.ylabel('[ J/K/s ]');
plt.legend(loc="upper right");
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