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7. Loi de Fick

La loi de Fick régit la diffusion d'espéce en I'absence de convection.
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7. Loi de Fick
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Equation de continuité :

Loi de Fick

D coefficient de diffusion

Equation de la diffusion

7. Loi de Fick
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1. Introduction

1. Introduction, motivation
» On ne peut pas modéliser intégralement un systéme de 1023 particules
» la thermo classique permet une description macroscopique
» le but de ce chapitre est de compléter le lien entre microscopique et macroscopique
» vous aurez un cours entier de physique statistique en 3éme année
i

» nous allons voir les implications accessibles dg la statistique de Boltzman
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2. Définitions, Hypothéses fondamentales

2. Définitions, Hypothéses fondamentales

Définition :

On appelle nombre de configurations d'un systéme dans un état donné, le nombre
d'états microscopiques qui ont le méme état macroscopique
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2. Définitions, Hypothéses fondamentales
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2. Définitions, Hypothéses fondamentales

Hypothése fondamentale :

La fluctuation microscopique est trés rapide : le systéme explore les états
microscopiques d'un état macroscopique sur une échelle de temps bien plus courts que
le temps caractéristique d'évolution des grandeurs macroscopiques

On a une équiprobabilité des états microscopiques
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3. Statistique de Boltzman
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3. Statistique de Boltzman

#‘—’J‘”" ‘ u
Densité de probabilité d'un état d'énergie donnée m °
U\'L;uo—u|

p(Uh) = Q1 (U1)2(Ug — Uy)

(o)
S1(U1)) =kglnQy — Q1 (Uy) =exp <51/E:1))
p(Ur) Q(Up) = Q1 (Ur) Qa2 (Up_Us) = exp [51 (U1) + Z(UO — Ul)]

Développement limité autour de la valeur d'équilibre Uz

1

S1(U) =5 (U1)+ (L —U 5 1+§ 8U12

a I'équilibre entropie max : aﬁ =0 en U;. Pareil pour S,.



3. Statistique de Boltzman

2 8 51 2 8252
p(Ui1) Qg = exp [k <51 (U1) + (U1 Uy) 8U2 + S (Up— Uz) + (Ul Uh) BU2>]
_ $1 (V1) + %2 (Lo — Un) (Ui —Th)® [a2s, @25,
Pl (o = [ ke N T <au12 = aug)
"
Avec cre
1 e s,
o2 Uz ' 9U3

positif car S fonction concave de U,

p(Up) xexp | —

202

10



3. Statistique de Boltzman

Important! On a une distribution Gaussienne !
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3. Statistique de Boltzman
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p(U1) Gaussienne dont la largeur a mi-hauteur est proportionnelle a 1/+1/Np !

12



3. Statistique de Boltzman

Distribution de Boltzman
On cherche la répartition statistique des énergies des particules dans le gaz.

Espace des phases): Espace de dimension 6N, représentant les positions et quantité de
mouvement de chacune des f,particules . Chaque point de cet espace est un état.
chacune de ces configuration microscopique est équiprobable, mais certaines aménent a
un méme macroscopique donné, et |'état d'équilibre est de loin le plus probable. p, et
pp densité des points dans cet espace pour les sous espaces position et quantité de
mouvement.

Py L.
Pa
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3. Statistique de Boltzman

Gaz parfait de particules monoatomiques : I'énergie totale est la somme de toutes les

énergies cinétiques de toutes les particules. La position n'a pas d'importance, seule la

quantité de nouvement est importante. Pas de rotation. E = luts ‘_‘,EL
YA L

E(x,p) Z]f_/im_\: (P + P} + p2)/2m

Les états de méme énergie se trouvent dans une hypersphére de |'espace des quantités
de mouvement de rayon +/(2mE) .

On peut donc calculer Q(U) le nombre d'états d'énergie U a 6U prés : coquille
sphériques entre U et U + dU. Seule la partie sur p change quelque chose sur x on
retrouve le volume de I'espace des phases * la densité volumique de points.

Nﬂ 3N/2 (2mU)3N/2

QU) = popV oy (3N/2)!
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3. Statistique de Boltzman

Vs . ~
Distribution des vitesses Boltzmann =~ pour um addéw -*ewu 50.3 L?A_{:J’&&

Densité de probabilité pour une particule d'avoir p; x obtenue par I'intégration sur un
"hyperanneau" de |'expression (1)

_ 1 Piy/2m
P(PL) =\ Smig T P [ kBT]

Densité de probabilité pour une particule d'avoir Vi = vq € + v1,,€, + v1,; €,

L. m 132 (1/2)mv?
p(¥) = [27rkBT} exp [_kBT]
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3. Statistique de Boltzman

densité de probabilité pour || On recommence : on les trouve dans une coquille
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3. Statistique de Boltzman

Vim = /OOOP(V) Vdgv 8;(5:
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3. Statistique de Boltzman

Généralisation
Sans échange de matiére, pour un systéme en contact avec un thermostat & T, pour un
état s d'énergie E;, densité de probabilité :

Es

p(Es) e fBT

Si plusieurs états ont la méme énergie E, g(E) densité d'états d'énergie E

E

p(E) o« g(E)e T

Normalisation : [, p(E)dE =1
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