
IX - Transport 7. Loi de Fick

7. Loi de Fick

La loi de Fick régit la diffusion d’espèce en l’absence de convection.
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IX - Transport 7. Loi de Fick

39

: in =- Equation de continuit

TraLoi de Fick phinomenologique JA = -Da

Pa coefficient de diffusion de A dans la "matric"

Den m's-

= ra-l-Dana] = a + Dan

=aDa



IX - Transport 7. Loi de Fick

Equation de continuité :

∂nA
∂t

= sA � ~r ·~jA

Loi de Fick
~jA(x , t) = �D~rnA

D coefficient de diffusion

Equation de la diffusion
∂nA
∂t

= sA +D~r2nA
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X - Introduction à la physique statistique

Plan du cours

I - Introduction
II - Premier principe
III - Second principe
IV - Fonctions thermodynamiques et équilibres
V - Gaz parfait et gaz de van der Waals ; théorie cinétique des gaz
VI - Changement d’états
VII - Machines thermiques
VIII - Thermochimie
IX - Transport
X - Physique statistique
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X - Introduction à la physique statistique

1. Introduction

2. Définitions, Hypothèses fondamentales

3. Statistique de Boltzman
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X - Introduction à la physique statistique 1. Introduction

1. Introduction, motivation

I On ne peut pas modéliser intégralement un système de 1023 particules

I la thermo classique permet une description macroscopique

I le but de ce chapitre est de compléter le lien entre microscopique et macroscopique

I vous aurez un cours entier de physique statistique en 3ème année

I nous allons voir les implications accessibles de la statistique de Boltzman
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X - Introduction à la physique statistique 2. Définitions, Hypothèses fondamentales

2. Définitions, Hypothèses fondamentales

Définition :

On appelle nombre de configurations d’un système dans un état donné, le nombre
d’états microscopiques qui ont le même état macroscopique
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X - Introduction à la physique statistique 2. Définitions, Hypothèses fondamentales
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X - Introduction à la physique statistique 2. Définitions, Hypothèses fondamentales

Hypothèse fondamentale :

La fluctuation microscopique est très rapide : le système explore les états
microscopiques d’un état macroscopique sur une échelle de temps bien plus courts que
le temps caractéristique d’évolution des grandeurs macroscopiques

On a une équiprobabilité des états microscopiques
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X - Introduction à la physique statistique 3. Statistique de Boltzman

3. Statistique de Boltzman

Entropie de Boltzman
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system sols S - max

Etat au + gd nombre da configurations- R(U)
&

2#i-system
rols

Sentropie
-> (systeme 1 + systeme2) = 1 (system 1)x1(systeme 2)
S (systema total) = S1 + Sz

Saluz S=Celmz Stor =Chl( &, . (2) =Crasher, + Cred la B2
~ -
Si + S2

S = klnt entropie solar Boltzman
.
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Densité de probabilité d’un état d’énergie donnée

p(U1) =
W1(U1)W2(U0 � U1)

W(U0)

S1 (U1) = kB lnW1 �! W1 (U1) = exp

✓
S1 (U1)

kB

◆

p (U1)W (U0) = W1 (U1)W2 (U0�U1) = exp


S1 (U1) + S2 (U0 � U1)

kB

�

Développement limité autour de la valeur d’équilibre Ū1

S1 (U1) = S1
�
U1

�
+

�
U1 � U1

� ∂S1

∂U1
+

1
2
�
U1 � U1

�2 ∂2S1

∂U2
1

à l’équilibre entropie max : ∂S1
∂U1

= 0 en Ū1. Pareil pour S2.
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X - Introduction à la physique statistique 3. Statistique de Boltzman

p (U1)W0 = exp


1
kB

✓
S1

�
U1

�
+

1
2
�
U1 � U1

�2 ∂2S1

∂U2
1
+ S2

�
U0 � U1

�
+

1
2
�
U1 � U1

�2 ∂2S2

∂U2
2

◆�

p (U1)W0 = exp

"
S1

�
U1

�
+ S2

�
U0 � U1

�

kB

#
exp

"�
U1 � U1

�2

2kB

✓
∂2S1

∂U2
1
+

∂2S2

∂U2
2

◆#

Avec
1

s2 = � 1
kB

✓
∂2S1

∂U2
1
+

∂2S2

∂U2
2

◆

positif car S fonction concave de U,

p (U1) µ exp

"
�
�
U1 � U1

�2

2s2

#
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Important ! On a une distribution Gaussienne !

Normalisation (intégrale proba vaut 1) et avec :
Z +•

�•
e�ax2

dx =

r
p

a
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X - Introduction à la physique statistique 3. Statistique de Boltzman

p (U1) =
1

s
p

2p
exp

"
�
�
U1 � U1

�2

2s2

#

U1 et S1 extensives donc proportionnelles à N0.

Donc s2 µ N0 car 1/s2 µ S1/U2
1 µ N0/N2

0

Normalisation par le nombre de particules N0

p (U1) =
1

s
p

2p
exp

"
�
�
U1/N0 � U1/N0

�2

2s2/N2
0

#

s2/N2
0 µ 1/N0

p(U1) Gaussienne dont la largeur à mi-hauteur est proportionnelle à 1/
p
N0 !
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Distribution de Boltzman

On cherche la répartition statistique des énergies des particules dans le gaz.

Espace des phases : Espace de dimension 6N représentant les positions et quantité de
mouvement de chacune des N particules . Chaque point de cet espace est un état.
chacune de ces configuration microscopique est équiprobable, mais certaines amènent à
un même macroscopique donné, et l’état d’équilibre est de loin le plus probable. rx et
rp densité des points dans cet espace pour les sous espaces position et quantité de
mouvement.
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Gaz parfait de particules monoatomiques : l’énergie totale est la somme de toutes les
énergies cinétiques de toutes les particules. La position n’a pas d’importance, seule la
quantité de nouvement est importante. Pas de rotation.

E (x , p) = p2/2m = (p2
x + p2

y + p2
z )/2m

Les états de même énergie se trouvent dans une hypersphère de l’espace des quantités
de mouvement de rayon

p
(2mE ) .

On peut donc calculer W(U) le nombre d’états d’énergie U à dU près : coquille
sphériques entre U et U + dU. Seule la partie sur p change quelque chose sur x on
retrouve le volume de l’espace des phases * la densité volumique de points.

W (U) = rprxV
N 3N

2U
p3N/2 (2mU)3N/2

(3N/2)!
(1)
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Distribution des vitesses Boltzmann

Densité de probabilité pour une particule d’avoir p1,x obtenue par l’intégration sur un
"hyperanneau" de l’expression (1)

p (p1,x ) =

r
1

2pmkBT
exp


�p2

1x/2m
kBT

�

Densité de probabilité pour une particule d’avoir ~v1 = v1,x~ex + v1,y~ey + v1,z~ez

p (~v1) =


m

2pkBT

�3/2
exp


� (1/2)mv2

1
kBT

�
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X - Introduction à la physique statistique 3. Statistique de Boltzman

densité de probabilité pour |~v | On recommence : on les trouve dans une coquille
sphérique de rayon v ... mais cette fois 3D

p (v) =

✓
m

2pkBT

◆3/2
4pv2e

�
(1/2)mv2

kBT
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Vitesse moyenne

vm =
Z •

0
p (v) v =

r
8kBT
pm

vitesse quatratique moyenne

hv2i =
Z •

0
p (v) v2dv =

3kBT
m

vitesse la plus probable

v0 =

r
2kBT
m
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X - Introduction à la physique statistique 3. Statistique de Boltzman

Généralisation

Sans échange de matière, pour un système en contact avec un thermostat à T , pour un
état s d’énergie Es , densité de probabilité :

p(Es) µ e
� Es

kBT

Si plusieurs états ont la même énergie E , g(E ) densité d’états d’énergie E

p(E ) µ g(E )e�
E

kBT

Normalisation :
R
E p(E )dE = 1

p(E ) =
1
Z
g(E )e�

E
kBT
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