10. Chaleurs latentes de changement de phase
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Expérience : point triple de |'azote
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10. Chaleurs latentes de changement de phase

Expérience : passage du fil a travers le bloc de glace
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IV - Fonctions thermodynamiques et équilibres
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1. Introduction, définition

1. Introduction, définition
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1. Introduction, définition
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1. Introduction, définition

Une machine thermique est un dispositif qui comprend un systéme thermodynamique
opérant selon une succession de cycles. Ce dispositif a la propriété d'échanger avec son
environement et peut soit convertlr de I'énergie thermique en travail, soit utiliser du

%igy pour réaliser un transfert thermique d'un corps froid

travail (g4
vers un corps chaud

Une machine thermique doit étre en contact avec un ou plusieurs réservoirs de chaleur
appelés thermostats ou bains thermiques. On appelle une machine ditherme une
machine qui durant son cycle échange avec deux bains thermique de température
différentes.



1. Introduction, définition

Représentation symbolique, diagrammes (p, V) et (T, S) 8 g}éw
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1. Introduction, définition

Sens de fonctionnement d'une machine thermique
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2. Efficacité, rendement
2. Efficacité /Z efa
Définition générale
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3. Cycle idéal de Carnot

3. Cycle idéal de Carnot (T JrT}:)

Un cycle idéal de Carnot (ou machine idéale de Carnot) est une machine ditherme dont
le cycle est réversible et composé de deux adiabatiques et deux isothermes.
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3. Cycle idéal de Carnot

Cycle de Carnot et temperature absolue versus temperature thermodynamlque
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3. Cycle idéal de Carnot

Pour un cycle idéal de Carnot, la définition de I'entropie et son application a des
transformations réversibles (2. principe) implique
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L'efficacité du moteur de Carnot réversible est
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3. Cycle idéal de Carnot

Cycle de Carnot en fonctionnement pac/frigo
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4. Clausius, Kelvin et rendement max.

4. Interdit de Clausius, interdit de Kelvin et théoréme du rendement
maximum

Nous avons vu (chapitre 3) que notre formulation du 2. principe implique que la chaleur
va spontanément d'un corps chaud a un corps froid.

Ceci a été formulé par Clausius sour la forme de "lI'interdit de Clausius".

Il n'existe pas de processus dont I'unique action est de tranférer de la chaleur d'un corps
froid vers un corps chaud.

e Totewsdt pac Clausius. .
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4. Clausius, Kelvin et rendement max.
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4. Clausius, Kelvin et rendement max.
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4. Clausius, Kelvin et rendement max.

Résumé :
Clausius (1822-1888)

Il n'existe pas de processus, dont |'unique action est de transporter de la chaleur d'un
thermostat de basse température d un thermostat de haute température.

Kelvin (1824-1907) ou Carnot (1796-1832)
Il n'existe pas de moteur en contact avec un seul thermostat, dont |'unique action serait
de transformer de la chaleur en travail

Théoréme du rendement maximum
L'efficacité maximum d'un moteur thermique ditherme est celle d'une machine de
Carnot réversible, 1 — Tp/ T},

sont des formulations historiques du 2. principe. Nous les avons démontrées a partir de
notre formulation du 2. principe qui inclut la définition de |'entropie. Il est aussi possible
de construire la fonction entropie a partie de ces formulation historiques.
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4. Clausius, Kelvin et rendement max.
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4. Clausius, Kelvin et rendement max.

Corrolaire au théoréme du rendement maximal

Un moteur ditherme et réversible a forcément |'efficacité de Carnot idéal,
N Carnot = 1—- Tb/ Th-
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5. Machine ditherme réelle

5. Machine ditherme réelle

Pour une machine ditherme réelle (irréversible)
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5. Machine ditherme réelle
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6. Cas du cycle pompe a chaleur/ frigo

6. Cas du cycle pompe a chaleur/ frigo
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6. Cas du cycle pompe a chaleur/ frigo
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Résumé

6. Cas du cycle pompe a chaleur/ frigo

Dans tous les cas (moteur, frigo, p.a.c.) : inégalité de Clausius

Efficacité moteur :

Efficacité pompe a chaleur :

Efficacité frigo :
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7. Cycle de Stirling

7. Cycle de Stirling

Cycle de Stirling moteur avec régénérateur : échanges et efficacité
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7. Cycle de Stirling
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7. Cycle de Stirling

Cycle de Stirling moteur sans régénérateur.
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