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Capacité calorifique des solides
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V - Gaz parfait et gaz de van der Waals 4. Capacité calorifique des gaz parfaits et des solides

Résumé, pour un gaz parfait :

U = NcvT H = NcpT cv =
f

2
R cp =

f + 2
2

R g =
f + 2
f

f cV cp g

Gaz monoatomique 3 3/2 R 5/2 R 5/3 = 1.67

Gaz diatomique (sans vibration) 5 5/2 R 7/2 R 7/5 = 1.4

Gaz diatomique (avec vibration) 7 7/2 R 9/2 R 9/7 = 1.28

Pour les solides, modèle de Dulong-Petit

Capacité calorifique molaire, par moles d’atomes !

c = 3R
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

5. Loi de Dalton

Dans un gaz parfait il n’y a pas d’intéraction des molécules de gaz entre elles autres que
par des chocs élastiques.

Dans un mélange parfait de gaz parfaits, les molécules des différentes espèces chimiques
n’intéragissent que par chocs élastiques

Exemple : air composé de N2, O2, Ar, CO2, H2O...

Considérons i espèces chimiques (gaz parfaits) à la température T avec ni le nombre de
moles pour chaque espèce.

n = Â
i

ni
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

Si les atomes / molécules du mélange n’interagissent pas entre elles sauf par chocs
élastiques

U = Â
i

Ui

Si le mélange est parfait, il se comporte comme un gaz parfait et alors

pV = nRT
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

Soit pi la pression partielle de l’espèce i . C’est par définition la pression qu’aurait
l’espèce i si elle occupait seule le volume V

piV = niRT

La pression totale est alors la somme de toutes les pressions partielles. C’est la loi de
Dalton

p = Â
i

pi
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V - Gaz parfait et gaz de van der Waals 5. Loi de Dalton

soit
xi =

ni

n

la fraction molaire de l’espèce i .
pi = xip

Considérons chaque espèce prise à la pression p du mélange. Le volume partiel Vi est le
volume qu’occuperait l’espèce i .

pVi = niRT

alors
Â
i

Vi = V
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

6. Au delà du gaz parfait : van der Waals
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

Potentiel de Lennard Jonnes
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

Au final, l’équation d’état devient

(p + a
N

2

V 2 )(V � bN) = NRT

a et b dépendent du gaz. n = N/V ! 0 on retrouve le gaz parfait.
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V - Gaz parfait et gaz de van der Waals 6. Au delà du gaz parfait : van der Waals

Exemple : Gaz SF6, a = 0, 786 m6 Pa/mol2 ; b = 8, 786.10�5m3/mol.

Comparaison des isothermes VdW (bleue) et GP (grise) à T=273K
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V - Gaz parfait et gaz de van der Waals 7. Isothermes en coordonnées réduites

7. Isothermes en coordonnées réduites
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V - Gaz parfait et gaz de van der Waals 7. Isothermes en coordonnées réduites

Coordonnées normalisées aux valeurs critiques
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VI - Changements d’état

Plan du cours
I - Introduction
II - Premier principe
III - Second principe
IV - Fonctions thermodynamiques et équilibres
V - Gaz parfait et gaz de van der Waals ; théorie cinétique des gaz
VI - Changement d’états
VII - Machines thermiques
VIII - Thermochimie
IX - Transport
X - Physique statistique
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VI - Changements d’état

1. Troisième principe de la thermodynamique

2. Concavité de S(U,V)

3. Convexité de U(S,V)

4. Signes des capacités thermiques

5. Courbure des potentiels thermodynamiques

6. Stabilité en termes de U(S,V)

7. Gaz de v.d.W., pallier de liquéfaction

8. Interprétation du modèle du gaz de vdW

9. Diagrammes de phases

10. Chaleurs latentes de changement de phase

11. Etats hors équilibre (surfusion)
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VI - Changements d’état 1. Troisième principe de la thermodynamique

1. Troisième principe de la thermodynamique
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VI - Changements d’état 2. Concavité de S(U,V)

2. Concavité de S(U,V)

L’entropie S est une fonction concave de l’énergie interne et du volume
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VI - Changements d’état 2. Concavité de S(U,V)
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VI - Changements d’état 2. Concavité de S(U,V)
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VI - Changements d’état 2. Concavité de S(U,V)
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VI - Changements d’état 4. Signes des capacités thermiques

4. Signes des capacités thermiques

Pour un système stable :

Cp � CV � 0

kS � 0

kT = kS
Cp

CV
� 0
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VI - Changements d’état 4. Signes des capacités thermiques

Démonstration :
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VI - Changements d’état 4. Signes des capacités thermiques
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VI - Changements d’état 3. Convexité de U(S,V)

3. Convexité de U(S,V)

L’énergie interne est une fonction convexe de l’entropie et du volume

9

~

u(s
,
v) du

= TdS-pdV Gun 30 ) = P o

n acissante onee ·V= cte

UIV) a Sicte E2Un)
,

>0 CU) =G =As
4) :

ol
:

g
: Lots = East o



VI - Changements d’état 3. Convexité de U(S,V)

10

Ansermet Brochet 2
:

edition on contre que Uh o = Ks > &

30 edition GP - demonstration



VI - Changements d’état 3. Convexité de U(S,V)
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VI - Changements d’état 5. Courbure des potentiels thermodynamiques

5. Courbure des potentiels thermodynamiques

Les potentiels thermodynamiques U, F , H, G sont des fonctions convexes de leurs
variables d’état extensives S et V et concaves de leurs variables intensives T et p.
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VI - Changements d’état 6. Stabilité en termes de U(S,V)

6. Stabilité en termes de U(S,V)
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VI - Changements d’état 7. Gaz de v.d.W., pallier de liquéfaction

7. Gaz de v.d.W., pallier de liquéfaction, règle de Maxwell
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VI - Changements d’état 7. Gaz de v.d.W., pallier de liquéfaction
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VI - Changements d’état 7. Gaz de v.d.W., pallier de liquéfaction
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