4. Capacité calorifique des gaz parfaits et des solides
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Résumé, pour un gaz parfait :

U= Nc, T H = Nc, T c, =

4. Capacité calorifique des gaz parfaits et des solides

f
=R
2

f+2
= —

42
R _IrTe
2 =77

v Cp Y

Gaz monoatomique

3/2R | 5/2R | 5/3 =167

Gaz diatomique (sans vibration)

5/2R | 7/2R | 7/5=14

Gaz diatomique (avec vibration)

7/2R | 9/2R | 9/7=1.28

Pour les solides, modéle de Dulong-Petit

Capacité calorifique molaire, par moles d'atomes !

c=3R
P —

ron cou.-lz(cs?g{% = V= che
CP=C“ = O
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5. Loi de Dalton

5. Loi de Dalton

Dans un gaz parfait il n'y a pas d'intéraction des molécules de gaz entre elles autres que
par des chocs élastiques.

Dans un mélange parfait de gaz parfaits, les molécules des différentes espéces chimiques
n'intéragissent que par chocs élastiques

Exemple : air composé de Ny, O, Ar, CO,, H5O...

Considérons i espéces chimiques (gaz parfaits) a la température T avec N le nombre de
moles pour chaque espéce.
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5. Loi de Dalton

Si les atomes / molécules du mélange n'interagissent pas entre elles sauf par chocs
élastiques

U=3)_ U W Frergre i ntoave
; i .
’ de ,O@fe‘a’ v
Si le mélange est parfait, il se comporte comme un gaz parfait et alors

PR g

pV =MNRT
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5. Loi de Dalton

Soit p; la pression partielle de |'espéce i. C'est par définition la pression qu'aurait
I'espéce I si elle occupait seule le volume V

o piV = KRT

jy \ ‘. ;f,?« < peV = gN;RT »V;ri=nTgu;=m:Fv
~ o VZp=pl > s 2

e

LI (5

T

La pression totale est alors la somme de toutes les pressions partielles. C'est la foi de

Dalton
p=).pi

N
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5. Loi de Dalton

soit " PivzN;RT = %.mzr-_ 2 pY¥
TN vty
la fraction molaire de |'espéce i. .

pi = Xip
Considérons chaque espéce prise a la pression p du mélange. Le volume partiel V; est le
volume qu'occuperait I'espéce i.
pVi = NiRT

e G SU- - RTSN; =NRT = pV
r\_) JL ‘ f

alors




6. Au dela du gaz parfait : van der Waals

6. Au dela du gaz parfait : van der Waals

o
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ks elin
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6. Au dela du gaz parfait : van der Waals

Potentiel de Lennard Jonnes o~ -0
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6. Au dela du gaz parfait : van der Waals

M ok demalvnunes Ame proper ol & N o Py
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6. Au dela du gaz parfait :

Au final, I'équation d'état devient

2

N
(p+ay)(V = bN) = NRT

a et b dépendent du gaz. n = N/V — 0 on retrouve le gaz parfait.

a%%wewz bwwgwq

N\T'—so (Y.}&/%%V(A.—]D/(].fj ':.\\IRT

van der Waals

- P\f: NRT™
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6. Au dela du gaz parfait : van der Waals

Exemple : Gaz SFg, a = 0, 786 m® Pa/molz; b =8,786.10"°m3/mol.
Comparaison des isothermes VAW (bleue) et GP (grise) a T=273K

SF6 (1 mole)
200

volume(litres)
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7. lsothermes en coordonnées réduites

7. Isothermes en coordonnées réduites _
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7. lsothermes en coordonnées réduites

Coordonnées normalisées aux valeurs critiques

isothermes de VAW en coordonnées normalisées ( ('l7 >
3 -
] Fr /) -

2.5

gl
30,1

pression réduite
o
1

0.5 -

— T T T T T T
0.5 1 15 2

volume réduit

-

2

0

f
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1. Troisieme principe de la thermodynamique

1. Troisiéme principe de la thermodynamique
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2. Concavité de S(U,V)

2. Concavité de S(U,V) Concoe //_')‘_\ [@ww:m \\//\7

L'entropie S est une fonction concave de |'énergie interne et du volume
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2. Concavité de S(U,V)

V= che u(g,v)_;du;m,civ
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2. Concavité de S(U,V)

P‘BUf U- @"‘e S #Mc‘\‘M exncavyve o \[ :?_S> )
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VI - Changements d'état 2. Concavité de S(U,V)

{
20
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4. Signes des capacités thermiques

4. Signes des capacités thermiques

Pour un systéme stable :

C,>Cy >0
ks >0 Ks-'i}—\/)s taur ok
AV
f aowpd\%l
C Ky :_:i_‘?sl> ’ﬁrfi
KT:KSC—C>O v'br T
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4. Signes des capacités thermiques

Démonstration :
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4. Signes des capacités thermiques

P'W=P*Er '»V/Q
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3. Convexité de U(S,V)

3. Convexité de U(S,V)

L'énergie interne est une fonction convexe de |'entropie et du volume \-/
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3. Convexité de U(S,V)
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VI - Changements d'état 3. Convexité de U(S,V)

U (S, V) o U
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VI - Changements d'état 5. Courbure des potentiels thermodynamiques

5. Courbure des potentiels thermodynamiques

Les potentiels thermodynamiques U, F, H, G sont des fonctions convexes de leurs
variables d'état extensives S et V et concaves de leurs variables intensives T et p.

ulsy) — — Vu
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6. Stabilité en termes de U(S,V)

6. Stabilité en termes de U(S,V) lLCV) 3 2= cfe
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7. Gaz de v.d.W., pallier de liquéfaction

7. Gaz de v.d.W., pallier de liquéfaction, régle de Maxwell
Tzche a» da \dV
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faat (T)

7. Gaz de v.d.W., pallier de liquéfaction

Tl d - “de
A FHe =j&,9dv
54

AFhS g 2 cromae

AR Ll AR
AF chomm a2 = AF\MVJ
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7. Gaz de v.d.W., pallier de liquéfaction

Paat

pression réduite

isothermes de VdW en coordonnées normalisées
3

] o |
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